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Preface

We are very pleased to present the proceedings of the 8th Workshop on Algo-
rithms in Bioinformatics (WABI 2008), held as part of the ALGO 2008 meeting
at the University of Karlsruhe, Germany on September 15–19, 2008. WABI 2008
covered all research on algorithmic work in bioinformatics and systems biology
with an emphasis on discrete algorithms and machine-learning methods that
address important problems in molecular biology. Such algorithms are founded
on sound models, are computationally efficient, and have been implemented and
tested in simulations and on real datasets. The goal of these proceedings is to
present recent research results, including significant work-in-progress, and to
identify and explore directions for future research. Original research papers were
solicited in all aspects of algorithms in bioinformatics, targeting the following
areas in particular:

• Exact, approximate, and machine-learning algorithms for sequence analysis,
gene and signal recognition, alignment and assembly, molecular evolution,
structure determination or prediction, gene expression, pathways, gene net-
works, proteomics, functional genomics, and drug design;

• High-performance computing approaches to computationally hard learning
and optimization problems in bioinformatics;

• Methods, software, and dataset repositories for development and testing of
such algorithms and their underlying models.

The goal of the workshop is to bring together an interdisciplinary group of in-
dividuals with research interests in bioinformatic algorithms. For this reason, this
year’s workshop was held in conjunction with the 16th Annual European Sym-
posium on Algorithms (ESA), the 6th Workshop on Approximation and Online
Algorithms (WAOA), the 8th Workshop on Algorithmic Approaches for Trans-
portation Modeling, Optimization, and Systems (ATMOS), and the ALGO 2008
Graduate Students Meeting. We believe this interdisciplinary group, especially
with the specific inclusion of graduate students and young scientists, is essential
for moving the field of bioinformatics forward in exciting and novel ways. We
hope this volume attests to that fact with the assortment of exceptional papers
contributed to the volume.

We received a total of 81 submissions in response to our call for papers for
WABI 2008 from which 32 were selected to be contributions to this volume. The
topics range in biological applicability from genome mapping, to sequence as-
sembly, to microarray quality, to phylogenetic inference, to molecular modeling.

This volume was made possible by the excellent submissions to WABI 2008.
We thank all the authors for their submissions and especially those of papers
selected for inclusion in this volume for their help in revising their work according
to peer-review comments. We also thank our distinguished Program Committee
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for their great help in making difficult decisions on which papers to include in
this volume. Anyone who has served on a program committee knows that this
involves a great deal of concentrated effort over a short period of time. We are
truly grateful for the excellent reviews and recommendations received by our
Program Committee. These individuals are listed on the next page.

We were very fortunate to attract Eytan Ruppin of Tel Aviv University to
present the Keynote Address for WABI 2008 on the topic of large scale in silico
studies of human metabolic diseases. We appreciate his willingness to deliver this
address and establish the quality of the meetings. Finally, we would like to thank
Peter Sanders and Dorothea Wagner and their local organizing committee (Veit
Batz, Reinhard Bauer, Lilian Beckert, Anja Blancani, Daniel Delling, Dennis
Luxen, Elke Sauer, and Dominik Schultes) for their excellent job in organizing
these joint conferences.

We hope that you will consider contributing to future WABI events, through
a submission or by participating in the workshops.

September 2008 Keith Crandall
Jens Lagergren
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Knut Reinert, and Martin Vingron

Computing Alignment Seed Sensitivity with Probabilistic Arithmetic
Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Inke Herms and Sven Rahmann

The Relation between Indel Length and Functional Divergence:
A Formal Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

Raheleh Salari, Alexander Schönhuth, Fereydoun Hormozdiari,
Artem Cherkasov, and S. Cenk Sahinalp

Detecting Repeat Families in Incompletely Sequenced Genomes . . . . . . . . 342
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Multichromosomal Genome Median and Halving

Problems

Eric Tannier1, Chunfang Zheng2, and David Sankoff2

1 INRIA Rhône-Alpes, Université de Lyon 1, Villeurbanne, France
2 University of Ottawa, Canada

Abstract. Genome median and halving problems aim at reconstructing
ancestral genomes and the evolutionary events leading from the ances-
tor to extant species. The NP-hardness of the breakpoint distance and
reversal distance median problems for unichromosomal genomes do not
easily imply the same for the multichromosomal case. Here we find the
complexity of several genome median and halving problems, including
a surprising polynomial result for the breakpoint median and guided
halving problems in genomes with circular and linear chromosomes; the
multichromosomal problem is thus easier than the unichromosomal one.

1 Introduction

The gene order or syntenic arrangement of ancestral genomes may be recon-
structed based on comparative evidence from present-day genomes — the phy-
logenetic approach — or on internal evidence in the case of genomes descended
from an ancestral polyploidisation event, or from a combination of the two.
The computational problem at the heart of phylogenetic analysis is the me-
dian problem, while internal reconstruction inspires the halving problem, and the
combined approach gives rise to guided halving. How these problems are formu-
lated depends first on the karyotypic framework: the number of chromosomes
in a genome and whether they are constrained to be linear, and second on the
objective function used to evaluate solutions. This function is based on some
notion of genomic distance, either the number of breakpoints, adjacent elements
on a chromosome in one genome that are disrupted in another, or the number
of evolutionary operations necessary to transform one genome to another.

While the karyotypes allowed in an ancestor vary only according to the di-
mensions of single versus multiple chromosome, and linear versus circular versus
mixed, the genomic distances of interest have proliferated according to the kinds
of evolutionary operations considered, from the classic, relatively constrained,
reversals/transocations distance to the more inclusive double cut and join mea-
sure, and many others.

The complexity of each of the problems is known for one or more distances, in
one or more specific karyotypic contexts, and it is sometimes taken for granted
that these results carry over to other combinations of context and distance.
This is not necessarily the case. In this paper, we survey the known results and

K.A. Crandall and J. Lagergren (Eds.): WABI 2008, LNBI 5251, pp. 1–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 E. Tannier, C. Zheng, and D. Sankoff

unsolved cases for three distance measures in three kinds of karyotype, including
several results presented here for the first time, including both new polynomial-
time algorithms and NP-hardness proofs.

2 Genomes, Breakpoints and Rearrangements

Multichromosomal Genomes. We follow the general formulation of a genome
in [3]. A gene A is an oriented sequence of DNA, identified by its tail At and
its head Ah. Tails and heads are the extremities of the genes. An adjacency is
an unordered pair of gene extremities; a genome is a set of adjacencies on a
set of genes. Each adjacency in a genome means that two gene extremities are
consecutive on the DNA molecule. In a genome, each gene extremity is adjacent
to zero or one other extremity. An extremity x that is not adjacent to any other
extremity is called a telomere, and can be written as an adjacency x◦ with a
null symbol ◦. Consider the graph GΠ whose vertices are all the extremities of
the genes, and the edges include all the adjacencies in a genome Π as well as an
edge joining the head and the tail of each gene. This graph is a set of disjoint
paths and cycles. Every connected component is called a chromosome of Π . A
chromosome is linear if it is a path, and circular if it is a cycle.

A genome with only one chromosome is called unichromosomal. These are
signed permutations (linear or circular). A genome with only linear chromosomes
is called a linear genome.

Genomes can be represented as a set of strings, by writing the genes for each
chromosome in the order in which they appear in the paths and cycles of the
graph GΠ , with a bar over the gene if the gene is read from the head to the tail
(we say it has negative sign), and none if it is read from the tail to the head (it
has positive sign). For each linear chromosome, there are two possible equivalent
strings, according to the arbitrary chosen starting point. One is obtained from
the other by reversing the order and switching the signs of all the genes. For
circular chromosomes, there are also two possible circular string representations,
according to the direction in which the cycle is traversed.

For example, if a genome Π is defined as the set of adjacencies on the set of
genes {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{◦2h, 2t1h, 1t9h, 9tT, T 10t, 10h6h, 6t4t, 4h3h, 3tT, T 8t, 8h5t, 5h7t, 7h◦},

we write it as the linear genome with 3 chromosomes:

Π =
(

2 1 9 , 10 6 4 3 , 8 5 7
)

A duplicated gene A is a couple of homologous oriented sequences of DNA, iden-
tified by two tails A1t and A2t, and two heads A1h and A2h. An all-duplicates
genome Δ is a set of adjacencies on a set of duplicated genes.

For example, the following genome Δ is an all-duplicates genome on the set
of genes {1, 2, 3, 4, 5}.

Δ =
(

2 1 2 5 , 4 3 4 1 , 3 5
)
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For a genome Π on a gene set G, a doubled genome Π⊕Π is an all-duplicates
genome on the set of duplicated genes from G such that if AxBy is an adjacency
of Π (x, y ∈ {t, h}), either A1xB1y and A2xB2y, or A2xB1y and A1xB2y are
adjacencies of Π ⊕Π . This includes telomeric adjacencies, so that a telomere in
Π should yield two telomeres in Π ⊕Π .

Note the difference between a general all-duplicates genome and the special
case of a doubled genome: the former has two copies of each gene, while in
the latter these copies are organised in such a way that there are two identical
copies of each chromosome (when we ignore the 1’s and 2’s in the A1x’s and
A2x’s): it has two linear copies of each linear chromosome, and for each circular
chromosome, either two circular copies or one circular chromosome containing
the two successive copies. Note also that for a genome Π , there is an exponential
number of possible doubled genomes Π ⊕ Π (exactly two to the power of the
number of non telomeric adjacencies).

In discussing all-duplicates genomes, we will sometimes contrast them with
ordinary genomes which have a single copy of each gene.

The Breakpoint Distance. We construct a breakpoint distance on multichro-
mosomal genomes that depends on common adjacencies, or rather their absence,
and also on common telomeres (or lack thereof) in two genomes. For two genomes
Π and Γ on n genes, suppose Π has NΠ chromosomes, and Γ has NΓ chromo-
somes. Let a be the number of common adjacencies, e be the number of common
telomeres of Π and Γ . Then insofar as it should depend additively on these
components, we may suppose the breakpoint distance has form

dBP (Π,Γ ) = n− aβ − eθ + (NΠ +NΓ )γ + (|NΠ −NΓ |)ψ,

where β, θ and γ are positive parameters, while ψ may have either sign. Taking
Π = Γ and imposing dBP (Π,Π) = 0 yields the relations β = 1 and 1−2θ+2γ =
0, so θ = γ + 1/2. Now it is most plausible to count a total of 1 breakpoint for
a fusion or fission of linear chromosomes, which implies γ = ψ = 0, so the most
natural choice of breakpoint distance between Π and Γ is

dBP (Π,Γ ) = n− a− e

2
.

For an all-duplicates genome Δ and an ordinary genome Π , the breakpoint dis-
tance between Π and Δ is dBP (Π,Δ) = minΠ⊕Π dBP (Π ⊕Π,Δ).

The Double-Cut-and-Join Distance. Given a genome Π , which is defined
as a set of adjacencies, a double-cut-and-join (DCJ) is an operation ρ acting on
two adjacencies pq and rs (possibly some of p, q, r, s are ◦ symbols and even an
adjacency may be composed of two ◦ symbols). The DCJ operation replaces pq
and rs either by pr and qs, or ps and qr.

A DCJ can reverse an interval of a genome (DCJs include reversals), and may
also fission one chromosome into two, fusion two chromosomes into a single one,
or achieve a reciprocal translocation between two chromosomes. Two consecutive
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DCJ operations may result in a block interchange: two segments of a genome
exchange their positions, which results in a transposition if the two intervals
are contiguous in the permutation. DCJ is thus a very general framework. It
was introduced by Yancopoulos et al. [22], as well as by Lin et al. in a special
case [14], and has since been adopted by Bergeron et al. [3] and many others,
and has also been called “2-break rearrangement” [2].

If Π and Γ are two genomes on n genes, the DCJ distance dDCJ(Π,Γ ) is the
minimum number of DCJ operations needed to transform Π into Γ .

For an all-duplicates genome Δ and an ordinary genome Π , the DCJ distance
between Π and Δ is dDCJ(Π,Δ) = minΠ⊕Π dDCJ (Π ⊕Π,Δ).

The Reversal/Translocation Distance. The reversal/translocation distance
was introduced by Hannenhalli and Pevzner [11], and is equivalent to the DCJ
distance constrained to linear genomes.

If Π is a linear genome, a linear DCJ operation is a DCJ operation on Π that
results in a linear genome. This allows reversals, reciprocal translocations, and
chromosome fusions, fissions, which are special cases of translocations. Other
DCJs, that create temporary circular chromosomes, are not allowed. If Π and Γ
are linear genomes, the RT distance between Π and Γ is the minimum number
of linear DCJ operations that transform Π into Γ , and is noted dRT (Π,Γ ).

3 Computational Problems

The classical literature on genome rearrangements aims at reconstructing the
evolutionary events and ancestral configurations that explain the differences be-
tween extant genomes. The focus has been on the genomic distance, median
and halving problems. More recently the doubled distance and guiding halving
problems have also emerged as important. In each of the ensuing sections of this
paper, these five problems are examined for a specific combination of distance d
(breakpoint, DCJ or RT) and kind of multichromosomal karyotype.

1- Distance. Given two genomes Π,Γ , compute d(Π,Γ ). Once the distance is
calculated, an additional problem in the cases of DCJ and RT is to reconstruct
the rearrangement scenario, i.e., the events that differentiate the genomes.

2- Double Distance. Given an all-duplicates genome Δ and an ordinary
genome Π , compute d(Δ,Π). Because the assignment of labels “1” or “2” to
the two identical (for our purposes) copies of a duplicated gene in Δ is arbitrary,
the double distance problem is equivalent to finding such an assignment that
minimises the distance between Δ and a genome Π ⊕Π considered as ordinary
genomes, where all the genes on any one chromosome in Π ⊕Π are uniformly
labeled “1” or “2” [2,26]. The double distance function is not symmetric because
Δ is an all-duplicates genome and Π is an ordinary one, thus capturing the
presumed asymmetric temporal and evolutionary relationship between the an-
cestor Π and the present-day genome Δ.
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3- Median. Given three genomes Π1, Π2, Π3, find a genome M which minimises
d(Π1,M) + d(Π2,M) + d(Π3,M). The median problem estimates the common
ancestor of two genomes, given a third one (not necessarely specifies) as an
outgroup. It may be used as a hint for phylogenetic studies.

4- Halving. Given an all-duplicates genome Δ, find an ordinary genome Π
which minimises d(Δ,Π). The goal of a halving analysis is to reconstruct the
ancestor of an all-duplicates genome at the time of the doubling event.

5- Guided Halving. Given an all-duplicates genomeΔ and an ordinary genome
Π , find an ordinary genome M which minimises d(Δ,M)+d(M,Π). The guided
halving problem is similar to the genome halving problem for Δ, but it takes into
account the ordinary genome Π of an organism presumed to share a common
ancestor with M , the reconstructed undoubled ancestor of Δ.

We will survey these five computational problems for the three distances that
we have introduced, in the cases of multichromosomal genomes containing all
linear chromosomes or permitting circular chromosomes.

4 Breakpoint Distance, General Case

In this section, d = dBP , and genomes are considered in their most general de-
finition, that is, multichromosomal with both circular and linear chromosomes
allowed. As the nuclear genome of a eukaryotic species, such a configuration
would be rare and unstable. Nevertheless this case is of great theoretical in-
terest, as it is the only combination of distance and karyotype where all five
problems mentioned in Section 3 prove to be polynomially solvable, including
the only genomic median problem that is polynomially solvable to date. Further-
more, the solutions in this context may suggest approaches for other variants or
the problems, as well as providing a rapid bound for other distances, through
the Watterson et al. bound [21].

Distance and Double Distance. The distance computation follows directly
from the definition, and is easily achievable in linear time.

The double distance computation is also easy: let Π be a genome and Δ be an
all-duplicates genome. Let ab be an adjacency in Π (a or b may be ◦ symbols). If
a1b1 or a2b2 is an adjacency in Δ, choose a1b1 and a2b2 for adjacencies in Π⊕Π .
If a1b2 or a2b1 is an adjacency in Δ, choose a1b2 and a2b1 for adjacencies in
Π⊕Π . The two cases are mutually exclusive, so the assignment is made without
ambiguity. Assign all remaining adjacencies arbitrarily.

It is easy to see that this procedure minimises d(Π ⊕Π,Δ), as every possible
common adjacency or telomere in Δ and Π is a common adjacency or telomere
in Π ⊕Π and Δ.

Median. The following result contrasts with the NP-completeness proofs of all
genome median problems in the literature [6,7,17]. The problem is NP-complete
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for unichromosomal genomes, whether they are linear or circular [6,17], but the
multichromosomal case happens to be easier.

Theorem 1. There is a polynomial time algorithm for the multichromosomal
genome median problem.

Proof. For this extended abstract, we show only the principle of the algorithm,
and omit the details of the proofs. Let Π1, Π2, Π3 be three genomes on a gene
set G of size n. Draw a complete graph G on the vertex set containing the union
of all the extremities of the genes in G and a set containing one supplementary
vertex tx for every gene extremity x. For any pair of gene extremities x, y, weight
the edge xy by the number of genomes, among Π1, Π2, Π3, for which xy is an
edge. Then each edge in G joining two gene extremities is weighted by 0, 1, 2
or 3. Now for any vertex x, weight the edge xtx by half the number of genomes,
among Π1, Π2, Π3, having x as a telomere. Each edge xtx is then weighted by
0, 1

2 , 1, or 3
2 . To every other edge of the complete graph G, assign the weight 0.

Let M be a perfect matching in G. Clearly, the edges between gene extremities
in G define the adjacencies of a genome, that we also call M . The relation
between the weight of the perfect matching M and the median score of the
genome M is easy to state:

Claim. The weight of the perfect matchingM inG is 3n−(d(Π1,M)+d(Π2,M)+
d(Π3,M)).

This implies that a maximum weight perfect matching M is a minimum score
median genome. As the maximum weight perfect matching problem is polyno-
mial, so is the breakpoint median problem. ��

Note that this algorithm remains valid if the median of more than three genomes
is to be computed.

Halving. To our knowledge, the genome halving with breakpoint distance has
not yet been studied. In this framework, it has an easy solution, using a com-
bination of elements from the maximum weight perfect matching technique in
Theorem 1 and the double distance computation: let Δ be an all-duplicates
genome on a gene set G, and G be the complete graph on the vertex set contain-
ing all the extremities of the genes in G, plus one supplementary vertex tx for
every gene extremity x. For any pair of gene extremities x, y, weight the edge xy
by zero, one or two, according to the number of times an xy adjacency is present
in Δ. Now for any vertex x, weight the edge xtx by half the number of times x
is a telomere in Δ. Weight the remaining edges between t vertices by zero.

Claim. A maximum weight perfect matching M in G defines the adjacencies of
a genome M minimising d(Δ,M).

Guided Halving. Again, this will be the only polynomial result for the guided
genome halving problem. The solution combines elements of the three algorithms
(double distance, median, halving) previously discussed in this section.
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Let Δ be an all-duplicates genome on a gene set G, and Π be a genome on G.
Let G be the complete graph on the vertex set containing all the extremities of
the genes in G, plus one supplementary vertex tx for every gene extremity x. For
any pair of gene extremities x, y, weight the edge xy by the number of times x is
adjacent to y in Δ and Π , and weight the edge xtx by half the number of times
x is a telomere in Δ and Π . Weight the remaining edges between t vertices by
zero.

Claim. A maximum weight perfect matching M in G defines the adjacencies of
a genome M minimising d(Δ,M) + d(M,Π).

5 Breakpoint Distance, Linear Case

In this section, d = dBP and all genomes must be linear, as is most appropriate
for modeling for the eukaryotic nuclear genome. The solutions to the distance
and double distance problems are the same as in the previous section, where cir-
cularity was allowed. But in contrast to the model of Section 4, all the problems
concerning at least three genomes are NP-complete.

The Median Problem

Theorem 2. The breakpoint median problem for multichromosomal linear gen-
omes is NP-hard.

Proof. For this extended abstract, we show only the principle of the reduction,
and omit the details. We use a reduction from the circular permutation me-
dian (CPM) problem, which asks: Given three circular genomes Π1, Π2, and
Π3 with only one chromosome, find a circular genome M with only one chro-
mosome, which minimises d(Π1,M) + d(Π2,M) + d(Π3,M). This problem is
NP-hard [6,17].

LetΠ1,Π2,Π3, be an instance of the CPM problem, on the gene set {1, . . . , n}.
Let n+1 be a new gene, and Π ′

i be the genome constructed from Πi (1 ≤ i ≤ 3)
by deleting the adjacency x1t (x is the extremity of a gene in {2, . . . , n}), and
adding the adjacency x(n+ 1)t. Genomes Π ′

1, Π ′
2 and Π ′

3 are linear. Let k be a
positive integer.

Claim. There exists a unichromosomal and circular genome M on {1, . . . , n}
with d(Π1,M)+d(Π2,M)+d(Π3,M) ≤ k if and only if there exists a multichro-
mosomal and linear genome M ′ on {1, . . . , n+ 1} with d(Π ′

1,M
′)+ d(Π ′

2,M
′)+

d(Π ′
3,M

′) ≤ k. (This claim implies the theorem). ��

Halving and Guided Halving. Surprisingly, the halving problem has not been
treated in the literature. We conjecture it has a polynomial solution, because the
halving problem for all other rearrangement distances is polynomial. Construct-
ing a solution is beyond the scope of this paper, and the problem remains open.

This guided halving problem is NP-hard, as proved in [24], using the
NP-completeness result for the median proved above.
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Fig. 1. The breakpoint graph of the genomes Π = (2 1 9 10 6 ; 4 3 ; 8 5 7) and
Γ = (1 2 3 4 ; 5 6 7 8 9 10). Π-edges are drawn with bold segments, and Γ -edges
are the thin circle arcs.

6 DCJ Distance, General Case

In this section, d = dDCJ . Genomes can have several chromosomes, circular or
linear. This is the most general context in which the DCJ distance has been
explicitly formulated [3].

The complexity of the genome median probem is not established by the work
of Caprara [7], who proved the unichromosomal result only. We show its NP-
hardness here. The double distance problem was proposed by Alekseyev and
Pevzner [2], and we will show its NP-hardness as well.

Distance. There is an easy linear solution, both for the distance and the scenario
computation [3,22].

The breakpoint graph of two genomes Π and Γ , denoted by BP (Π,Γ ), is the
bipartite graph whose vertex set is the set of extremities of the genes, and there
is an edge between two vertices x and y if xy is an adjacency in either Π (these
are Π-edges) or Γ (Γ -edges). Note that we do not invoke any ◦ symbols. Vertices
in this graph have degree zero, one or two, so that the graph is a set of paths
(possibly including some with no edges) and cycles. It is also the line-graph of
the adjacency graph, an alternate representation in [3], and is commonly used in
genome rearrangement studies. Fig. 1 shows an example of a breakpoint graph.
Theorem 3 shows how to obtain the distance directly from the graph.

Theorem 3. [3]1 For two genomes Π and Γ , let c(Π,Γ ) be the number of cycles
of the breakpoint graph BP (Π,Γ ), and p(Π,Γ ) be the number of paths with an
even number of edges. Then

d(Π,Γ ) = n− c(Π,Γ ) − p(Π,Γ )
2

.

Note the similarity to the breakpoint distance formula in Section 2. The number
of genes n is the same in both formulae, the parameter c is related to parameter
1 The formula is presented in [3] with the cycles and odd paths of the adjacency

graph. This corresponds to cycles and even paths of the breakpoint graph, as it is
the line-graph of the adjacency graph.
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a in the breakpoint formula in that each common adjacency is a cycle of the
breakpoint graph (with two parallel edges), and parameter p is related to para-
meter e, as each shared telomere is an even path (with no edge) in the breakpoint
graph. Although these two measures of genomic distance were derived in differ-
ent contexts and through different reasoning, their formulae show a remarkably
similar form. They differ in that the DCJ formula counts non trivial cycles and
paths, but for distant genomes, they tend to give the same values.

Double Distance

Theorem 4. The DCJ double distance problem is NP-hard for multichromoso-
mal genomes.

Proof. For this extended abstract, we show only the principle of the reduc-
tion, and omit the details. Reduction is from the breakpoint graph decomposition
(BGD) problem (see [7]). A graph G is bicoloured if all its edges are coloured
in either red or blue; it is balanced if it has only degree 2 or degree 4 vertices,
every vertex is incident to the same number of red and blue edges, and there is
no cycle formed by only red or only blue edges.

Given a balanced bicoloured graph G, the breakpoint graph decomposition
problem is to find a decomposition of the edges of G into a maximum number of
edge-disjoint cycles, each alternating between red and blue edges. Berman and
Karpinski [4] proved APX-hardness of this problem.

Let G be a balanced bicoloured graph on n vertices, defining an instance of
the BGD problem. Define the gene set G as the vertex set of G. Construct an all-
duplicates genome Δ and a genome Π on G in the following way. First, for each
vertex X of G, let Xt and Xh be its extremities; let XtXh be an adjacency in Π .
Then, for every vertex X of G, let X1t, X1h, X2t and X2h, be the extremities of
the duplicated gene X . For each blue edge XY in G, construct an adjacency in
Δ joining the heads of genes X1 or X2, and Y 1 or Y 2: if vertex X has degree 4,
one of the two adjacencies defined by the two blue edges involves X1h, and the
other X2h (arbitrarily). If vertex X has degree 2, define the adjacency with X1h

and add another adjacency X1tX2h in Δ. For each red edge, add an adjacency
in Δ according to the same principle, but joining tails of genes.

We then have an all-duplicates genome Δ, and a genome Π . Note that Π is
composed of n circular chromosomes, one for each gene, and that neither Π nor
Δ have telomeres.

Claim. The maximum number of edge-disjoint alternating cycles in G is equal
to 2n− d(Δ,Π). (This claim implies the theorem). ��

Median. Though effective heuristics are available [1], we have:

Theorem 5. The DCJ median problem for multichromosomal genomes is NP-
hard.

Proof. We use a reduction from the breakpoint graph decomposition defined in
the proof of Theorem 4, in a way very similar to part of Caprara’s proof [7] for
the unichromosomal case.
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Fig. 2. Strategy for reducing the breakpoint graph decomposition to the DCJ median
problem. Red edges are represented by thick lines, while blue edges are thin.

Let G be a balanced bicoloured graph on n vertices. Define the gene set G as
a set containing one gene X for every degree 2 vertex of G, and two genes X
and Y for every degree 4 vertex of G.

Apply the following transformation to G, which is similar to the transforma-
tion in [7], as illustrated in Figure 2.

Let v be a vertex of degree 2 in G. Replace v by two vertices labeled by the
two extremities of the associated gene X , namely Xt and Xh. The blue edge
incident to v becomes incident to Xh and the red edge to Xt. Add one Π1-edge
and one Π2-edge between Xh and Xt. Now let v be a vertex of degree 4 in G.
Replace v by four vertices labeled by the four extremities of X and Y , Xt, Xh,
Yh, and Yt. The blue edges incident to v become incident to Xh and Yh, while
the red edges become incident to Xt and Yt. Add two Π1-edges XtXh and YtYh,
and two Π2-edges XtYh and YtXh. Red and blue edges are the Π3-edges. Call
the final graph G′.

It is easy to see that Π1, Π2, and Π3 define genomes on the set of genes G,
and they have no telomeres. Let w2 be the number of degree 2 vertices of Γ ,
and w4 be the number of degree 4 vertices of Γ .

Claim. There exists a genome M such that d(M,Π1)+ d(M,Π2)+ d(M,Π3) ≤
w2+3w4−k if and only if there exists at least k edge-disjoint alternating cycles
in G. (This claim implies the theorem.) ��
Halving and Guided Halving. This problem has a polynomial solution, as
recently stated for unichromosomal genomes by [2] and in the general case
by [15,20]. All these algorithms are simplified versions of the algorithm by El-
Mabrouk and Sankoff [9], developed for the RT rearrangement distance.

Theorem 6. Guided halving is NP-complete for multichromosomal genomes.

We omit here the proof of this theorem, based on a reduction of the same problem
and similar ideas than in the previous one.

7 DCJ and Reversal/Translocation, Linear Chromosomes

In the original formulation of the DCJ distance [22], it was shown that there
is a solution where each excision of a circular intermediate could be followed
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directly by its reinsertion. Thus the median and halving problems can be stated
in terms of exclusively linear chromosomes in both the data genomes and the
reconstructed ancestor. They all remain open.

Hannenhalli and Pevzner proposed a polynomial-time algorithm for calculat-
ing dRT (Π,Γ ) for two genomes Π and Γ [11]. This was reformulated in [19]
and minor corrections were added by [16] and [12]. A polynomial time genome
halving algorithm was given in [9]. Though the constrained DCJ distance in the
preceding paragraph is arguably just as realistic, because of the long history of
dRT , effective heuristics have been developed and applied for the double dis-
tance [23,26], median [5,13] and guided halving problems [23,25,26], but their
complexities remain open. Note that Chen et al. give an NP-completeness result
on a problem which slightly generalizes the RT double-distance probem.

8 Conclusions

Table 1. Current knowledge of the status of complexity questions for five problems
related to ancestral genome reconstruction, for eight genomic distances in the unichro-
mosomal and multichromosomal contexts, including the new results in this paper. Other
versions of the halving problem are less restrictive [2,9,20]. P and NP stand for poly-
nomial and NP-hard, respectively; when followed by ?, represent our conjectures.

problem context distance halving double median guided
distance halving

breakpoint uni P open P NP [6,17] open
breakpoint general multi P new P new P new P new P new
breakpoint linear multi P new open P? P new NP new NP [24]

DCJ uni P [3,22] P [2] open NP [7] open
DCJ general multi P [3,22] P [15,20] NP new NP new NP new
DCJ linear multi P [22] open open open NP? open NP?

RT uni P [10] open open NP [7] open
RT multi P [11,12,16,19] P [9] open NP? open NP? open NP?
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Abstract. The ordering of genes in a genome can be changed through
rearrangement events such as reversals, transpositions and transloca-
tions. Since these rearrangements are “rare events”, they can be used to
infer deep evolutionary histories. One important problem in rearrange-
ment analysis is to find the median genome of three given genomes that
minimizes the sum of the pairwise genomic distance between it and the
three others. To date, MGR is the most commonly used tool for multi-
chromosomal genomes. However, experimental evidence indicates that it
leads to worse trees than an optimal median-solver, at least on unichro-
mosomal genomes. In this paper, we present a new branch-and-bound
method that provides an exact solution to the multichromosomal re-
versal median problem. We develop tight lower bounds and improve the
enumeration procedure such that the search can be performed efficiently.
Our extensive experiments on simulated datasets show that this median
solver is efficient, has speed comparable to MGR, and is more accurate
when genomes become distant.

1 Introduction

Annotation of genomes with computational pipelines can yield the ordering and
strandedness of genes for genomes; each chromosome can then be represented by
an ordering of signed genes, where the sign indicates the strand. Rearrangement
of genes under reversal (also known as inversion), transposition, and other oper-
ations such as translocations, fissions and fusions, is an important evolutionary
mechanism [7]. Since genome rearrangement events are “rare”, these changes of
gene orders enable biologists to reconstruct evolutionary histories far back in
time.

One important problem in genome rearrangement analysis is to find the median
of three genomes, that is, finding a fourth genome that minimizes the sum of the
pairwise genomic distances between it and the three given genomes. This problem
is important since it provides a maximum parsimony solution to the smallest bi-
nary tree and thus can be used as the basis for more complex methods. However,
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the median problem is NP-hard for genome rearrangement data [5,9] even un-
der the simplest distance definition. To date, MGR (Multiple Genome Rearrange-
ments) [4] is the only widely used tool that is able to handle multichromosomal
genomes. However, experimental evidence indicates that MGR leads to worse trees
than an optimal median solver [10], at least on small unichromosomal genomes.
With more and more whole genome information available, it becomes very impor-
tant to develop accurate median solvers for these multichromosomal genomes.

In this paper, we present an efficient branch-and-bound method to find the
exact median for three multichromosomal genomes. We use an easy-to-compute
and tight lower bound to prune bad branches and introduce a method that enu-
merates each genome at most once. Such median solver can be easily integrated
with the existing methods such that datasets with more than three genomes can
be analyzed.

2 Background and Notions

2.1 Genome Rearrangements

We assume a reference set of n genes {1, 2, · · · , n}, and a genome is represented
by an ordering of these genes. A gene g is assigned with an orientation that
is either positive, written g, or negative, written −g. Specifically, we regard a
multichromosomal genome as a set A = A(1), . . . , A(Nc) of Nc chromosomes
partitioning genes 1, . . . , n; where A(i) = 〈A(i)1, . . . , A(i)ni〉 is the sequence of
signed genes in the ith chromosome. In this paper, we also assume that each
gene occurs exactly once in the genome.

In this study, we only consider undirected chromosomes [12], i.e. the flip of
chromosomes is regarded as equivalent. We consider the following four opera-
tions on a genome: reversal, translocation, fission and fusion. Let a = 〈a1, . . . , ak〉
and b = 〈b1, . . . , bm〉 be two chromosomes. A reversal on the indices i and
j (i ≤ j) of chromosome a produces the chromosome with linear ordering
a1, a2, · · · , ai−1,−aj,−aj−1, · · · ,−ai, aj+1, · · · , ak. A translocation transforms
a = 〈E,F 〉 and b = 〈X,Y 〉 into 〈E, Y 〉 and 〈X,F 〉, whereE,F,X, Y are gene seg-
ments. The fusion of a and b results in a chromosome c = 〈a1, . . . , ak, b1, . . . , bm〉.
A fission of a results in two new chromosomes π = 〈a1, . . . , ai−1〉 and σ =
〈ai, . . . , ak〉.

An important concept in genome rearrangement analysis is thenumber of break-
points between two genomes. Given genomes A and B, a breakpoint is defined as
an ordered pair of genes (i, j) such that i and j are adjacent in A but not in B.

2.2 Genomic Distance for Multichromosomal Genomes

We define the edit distance as the minimum number of operations required to
transform one genome into the other. Hannenhalli and Pevzner (HP) [8] pro-
vided a polynomial-time algorithm to compute the distance (HP distance) for
reversals, translocations, fissions and fusions, as well as the corresponding se-
quence of events. Tesler [12] corrected the HP algorithm, which was later im-
proved by Bergeron et al. [3].
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Yancopoulos et al. [13] proposed a “universal” double-cut-and-join (DCJ)
operation, resulting in a new genomic distance that can be computed in linear
time. Although there is no direct biological evidence for DCJ operations, these
operations are very attractive because they provide a unifying model for genome
rearrangement [2]. Given two genomes A and B, computing the DCJ distance
between these two genomes (denote dDCJ(A,B)) is much easier to implement
than computing the HP distance (denote dHP (A,B)).

2.3 Reversal Median Problem

The median problem on three genomes is to find a single genome that minimizes
the sum of the pairwise distances between itself and each of the three given
genomes1. It has been proven that this problem is NP-hard [5] for unichromo-
somal genomes using reversal distance. Specifically the reversal median problem
(RMP) is to find a median genome that minimizes the summation of the multi-
chromosomal HP distances on the three edges.

Several solvers have been proposed for the unichromosomal reversal median
problem (including MGR), among them, the one developed by Caprara [6] is
the most accurate. Caprara’s median solver is exact and treats the problem in
a graph model, where each permutation corresponds to a matching of a point
set. As a branch-and-bound algorithm, it enumerates all possible solutions and
tests them edge by edge. At first, a lower bound is computed from the graph of
the given genome’s matchings. In each step of testing, the graph is reduced to
a smaller one according to each edge of the solution being tested. A new bound
is then computed from the new graph for bound testing. If the test failed, all
solutions containing the edges tested so far in the current solution are excluded.

On the other hand, when used for three genomes, MGR attempts to find a
longest sequence of reversals from one of the three given genomes that, at each
step in the sequence, moves closer to the other two genomes. Since it is limited
to a small subset of possible paths, MGR is less accurate than Caprara’s median
solver. Our method presented in this paper is inspired by Caprara’s solver, and
to our knowledge, is the first exact solver for the multichromosomal reversal
median problem.

3 Graph Model for Undirected Genome

In this section, we introduce the graph model and a lower bound on the HP
distance, which will be used in our new median solver.

3.1 Capless Breakpoint Graph

We modify the breakpoint graph to deal with genomes consisting of undirected
chromosomes. In [8,12], caps are introduced to transform the multichromosomal
genomes problem to unichromosomal problem. Caps play an important role in
1 The median problem can be generalized for q (q ≥ 3) genomes.
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deriving the rearrangement scenario; however, since they are not necessary to
compute the HP distance, capping nodes are not used here. We also do not dis-
tinguish between undirected unichromosomal and multichromosomal genomes,
and treat both in a uniform way. This model is equivalent to the graph model
of Bergeron et al. [1].

Given a node set V , we call an edge set M ⊂ {(i, j) : i, j ∈ V, i �= j} a
matching of V if each node in V is incident to at most one edge in M . If
each node in V is incident to exactly one edge in M , the matching is called
perfect, otherwise partial. A genome A on genes 1, . . . , n can be transformed to
an unsigned genome A on 1, . . . , 2n, by replacing each positive entry g with
2g − 1, 2g and each negative entry g with 2|g|, 2|g| − 1.

Consider the node set V := 1, . . . , 2n, and the associated perfect matching
H := {(2i− 1, 2i) : i = 1, . . . , n} (the base matching of V). There is a correspon-
dence between genomes composed of linear chromosomes and matchings M of
V such that there are no cycles in M∪H. These matchings are called genome
matchings. In particular, the genome matching M(A) associated with a genome
A is defined by

M(A) :=
{
(A(i)k,A(i)k+1) : k ∈ {2, 4, . . . , 2ni − 2}, i ∈ {1, . . . , Nc}

}
.

The nodes in {A(i)1 : 1 ≤ i ≤ nc}∪{A(i)2ni : 1 ≤ i ≤ nc} are called end nodes of
A, denoted by A-ends. The genome matching has no capping node appended and
all end nodes are not incident to any edge, thus the defined genome matchings are
partial matchings. The absence of caps is a crucial step to reduce the complexity
of the median problem for multichromosomal genomes.

Given two genomes A and B, the capless breakpoint graph G(A,B) = (V ,
M(A) ∪M(B)) defines a set of cycles and paths whose edges are alternate in
M(A) and in M(B). An example of G can be found in Fig. 1. c(A,B) denotes
the number of cycles. Paths start from an end node and terminate at another
end node. According to the type of ends, all paths in the graph can be classified
into three groups: AA-paths, BB-paths, and AB-paths(called odd paths in [2]).
A node which is an end of both A and B forms an AB-path of length 0. Denote
the number of AB-paths by |AB|, and the number of AA-paths by |AA|.

3.2 Lower Bound of the HP Distance

We derive the following lower bound on the HP distance for undirected genomes,
using only the parameters of the number of cycles and paths.

dHP ≥ n−
(
c(A,B) + |AB|/2

)
(1)

This bound is indeed the same as the double-cut-and-join distance formula [2]. It
can be directly derived from the HP distance formula for two multichromosomal
genomes [8,12] or simply from the result that dDCJ ≤ dHP [3], where dDCJ =
n−

(
c(A,B) + |AB|/2

)
[2].

For convenience, call c(A,B) + |AB|/2 the pseudo-cycle of G(A,B), denoted
by c̃(A,B). By the aid of DCJ distance, many useful results are easy to prove.
Since the DCJ distance satisfies the triangle inequality, we have
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Genomes                                A={‹ -5, 1, 6, 3 ›, ‹ 2, 4 ›}                 B={‹ 1, 6 ›, ‹ -5, -4, -3, -2 ›}

Doubled Genomes                 A={‹ 10, 9, 1, 2, 11, 12, 5, 6 ›,         B ={‹ 1, 2, 11, 12 ›,  
‹ 3, 4, 7, 8 ›}                                       ‹ 10, 9, 8, 7, 6, 5, 4, 3 ›}

Canonical Chromosome         
Ordering                                 2 4 -3 -6 -1 5                                      1 6 2 3 4 5

10 9 1 2 11 12 5 4 7

{5} {-5,-1} {1,-6} {6,-3} {3} {-2} {2,-4} {4}

{-1} {1,-6} {6} {5} {-5,4} {-4,3} {-3,2} {-2}

G(A,B)

AG(A,B)

836

Fig. 1. The G(A,B) is the capless breakpoint graph of genome A and B. In G(A, B)
diamonds represent B-ends, squares represent A-ends. Squares with a diamond inside
indicate nodes are both A-ends and B-ends. In this figure, n = 6, c(A, B) = 1, |AB| = 4,
and pseudo-cycle is 3. The graph AG(A, B) is defined in [2] and the concept of canonical
chromosome ordering is introduced in 4.3.

Lemma 1. Given three genomes A,B,C, n−c̃(A,C)+n−c̃(C,B) ≥ n−c̃(A,B).

3.3 Contraction Operation

We define the Multi-Breakpoint (MB) graph associated with q genomes G1, G2,
. . . , Gq as the graph G(G1, G2, . . . , Gq) with node set V and edge multiset M(G1)
∪M(G2), . . . ,∪M(Gq). Note that for two matchings M(Gj) and M(Gk), j �= k,
some edges may be common in both matchings, but they are considered distinct
parallel edges in the MB graph G(G1, G2, . . . , Gq). In this paper, q always equals
three.

Let Q := {1, . . . , q} and let τ be a genome, γ(τ) =
∑

k∈Q c̃(τ,Gk). By Equa-
tion 1, for any genome σ, δ(σ) =

∑
k∈Q dHP (σ,Gk) ≥ qn − γ(σ), where n is

the number of genes. We introduce the Pseudo-Cycle Median Problem (PMP):
given undirected genomes G1, G2, . . . , Gq, find a genome τ such that qn − γ(τ)
is minimized. We have the following theorem:

Theorem 1. Given an RMP instance and the associate PMP instance on q
undirected genomes. Let δ∗ and qn − γ∗ denote the optimal solution values of
RMP and PMP, then δ∗ ≥ qn− γ∗.

Proof. If σ is an optimal solution of RMP and τ an optimal solution of PMP,
δ∗ = δ(σ) ≥ qn− γ(σ) ≥ qn− γ(τ) = qn− γ∗. �
Theorem 1 implies that the solution of PMP yields a lower bound on the optimal
solution of RMP.
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In Caprara’s solver [6], the contraction on breakpoint graphs for perfect
matchings is introduced. We modify it to fit the MB graphs for partial match-
ings which are dealt with here. Given a partial matching M on node set V
and an edge e = (i, j) ∈ E = {(i, j) : i, j ∈ V , i �= j}, we define M/e,
the contraction of e on M (or on the genome corresponding to M) as fol-
lows. If e ∈ M, let M/e := M \ {e}. If one of i and j is an end, say i, and
(b, j) is the edge incident to j, then M/e := M \ {(b, j)}. If both i and j
are ends, M/e := M. Otherwise, let (a, i), (j, b) be the two edges in M in-
cident to i and j, M/e := M \ {(a, i), (j, b)} ∪ {(a, b)}. Given an MB graph
G(G1, G2, . . . , Gq), the contraction of an edge e is the operation that modifies
the MB graph G(G1, G2, . . . , Gq) as follows. Edge (i, j) is removed along with
nodes i and j. For k = 1, . . . , q, M(Gk) is replaced by M(Gk)/e, and the base
matching H is replaced by H/e.

4 Branch-and-Bound Algorithm

In this section, we describe a branch-and-bound algorithm for the multichromo-
somal reversal median problem.

4.1 A Basic Branch-and-Bound Algorithm for PMP

The following lower bound on reversal median is based on Lemma 1.

Lemma 2. Given a PMP instance associated with genomes G1, . . . , Gq,

γ∗ ≤ qn

2
+

q−1∑

k=1

q∑

l=k+1

c̃(Gk, Gl)
q − 1

. (2)

The lower bound on the optimal PMP solution given by qn minus the right-hand
side of (2), called LD, can be computed in O(nq2) time. For any PMP solution
T , the cycles and paths in T ∪ M(Gk) has one-to-one correspond to that in
(T/e) ∪ (M(Gk)/e) except for cycle of two copies of e. Therefore, for partial
matchings and the new contraction defined on it, the same lemma in [6] holds.

Lemma 3. Given a PMP instance and an edge e ∈ E, the best PMP solution
containing e is given by T̃ ∪ {e}, where T̃ is the optimal solution of the PMP
instance obtained by contracting edge e.

According to Lemma 3, if we fix an edge e in the matching of PMP solution, an
upper bound on the pseudo-cycle is given by |{k : e ∈ M(Gk)}| plus the upper
bound (2) computed after the contraction of e. A branch-and-bound algorithm
can be designed by these Lemmas. It enumerates all genomes gene by gene. In
each step, it either selects a gene as an end or an inner gene in a chromosome of
the solution (median) genome. In term of matching, the former operation fixes
an end node in the matching of the solution and the latter one fixes an edge e
in the matching. The former is called end fixing and the later edge fixing.
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In edge fixing, the algorithm applies a contraction of edge e on the input
genomes and computes a lower bound from these altered genomes. The number
of newly generated cycles of length 0 is added to a counter. Based on these two
values, the lower bound of all PMP solutions containing all edges added so far up
to e can be derived. If it is greater than the current lower bound of the median
problem, then e is not an edge in the matching of the best solution containing
current fixed edges, thus the algorithm enumerates another gene or mark the
last gene in the current solution as an end. Otherwise, the edge is fixed in the
current solution.

In end fixing, no contraction operation is applied on the intermediate genomes
and the lower bound is not changed. The number of newly generated paths of
length 0 is added to a counter. When a complete solution is available, the lower
bound that takes all the ends into account is computed by the aid of the counters
and compared with the current lower bound. If they are equal the algorithm stops
and the current solution is optimal.

4.2 Genome Enumeration

In the beginning, the algorithm enumerates all partial matchings by fixing, in
turn, either 1, or 2, . . . , or 2n as an end in the solution matching, which corre-
sponds to one end of a chromosome, but the other end of this chromosome is not
chosen yet. We call this chromosome an opening chromosome and this end an
open end. Recursively, if the last operation is an edge fixing of (x, j), we proceed
the enumeration by fixing in the solution, in turn, edge (k, l) where k is the other
end of the edge (j, k) in H incident to j, for all l with no incident edge fixed so
far or fix k as an end. Two cases exist if the last operation is an end fixing of x:

1. x is the other end of the current opening chromosome. We call x a closed
end and the chromosome is closed. If there exist nodes that are not fixed
in the solution, we enumerate by fixing in the solution, in turn, all available
nodes as an open end in the solution.

2. x is an open end. We enumerate the cases as follows: each edge (y, l) is fixed
in the solution one at a time, over all edges such that y is the node incident
to x in H and l has no incident edge fixed so far; or we take y as a closed
end.

4.3 Improved Branch-and-Bound Algorithm for PMP

The above scheme checks all concatenates of a genome thus will enumerate a
genome more than once, which costs considerable computing time. We define
the canonical chromosome ordering to overcome this problem. Let chromosome
X = 〈X1, . . . , XM 〉. The canonical flipping of X is: 〈X1, . . . , Xj , . . . , XM 〉, if
|X1| < |XM |; otherwise the flipping is 〈−XM , . . . ,−Xj, . . . ,−X1〉. For single-
gene chromosomes, say 〈g〉, the canonical flipping is 〈|g|〉.

For a signed gene g, if g > 0, l(g) = 2g − 1, r(g) = 2g; if g < 0, l(g) =
2|g|, r(g) = 2|g| − 1. Let 〈X1, . . . , XM 〉 be the canonical flipping of chromo-
some X , the smaller end of X is l

(
X1

)
. The larger end of X is r

(
XM

)
. After
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the canonical flipping of each chromosome, we order the chromosomes by their
smaller ends in increasing order to obtain the canonical chromosome ordering of
a genome. Obviously, one genome has only one form of canonical ordering, and
it can be uniquely represented by the canonical ordering along with the markers
of start and end points. Fig. 1 shows an example.

We improve the basic branch-and-bound algorithm to enumerate each genome
only once by using the canonical ordering. There are two states in the algorithm:
(1) open chromosome and (2) build chromosome. The algorithm is in state “open
chromosome” when it starts. It enumerates all the possible smaller ends of the
first chromosome by fixing, in turn, either node 1, or 2,. . ., or 2n − 2 as an
end in the solution. When a smaller end is selected, the state is changed to
“build chromosome”. Recursively, in state “build chromosome”, let the last edge
fixed in the current partial solution be (i, j) and the edge in H incident to j be
(j, k). There exist two branches if k can be a larger end of the current opening
chromosome:

1. “closed chromosome”: it fixes k as a larger end and closes the current opening
chromosome. The state is changed to “open chromosome”.

2. “build chromosome”: it proceeds the enumeration by fixing in the solution,
in turn, edge (k, l), for all l not be fixed in solution so far.

If k cannot be the larger end then only the “build chromosome” branch is per-
mitted. If the state is “open chromosome”, it will enumerate all the available
smaller ends of the next chromosome by fixing, in turn, all available smaller
ends.

We proceed in a depth-first order again. With this scheme we can perform
the lower bound test after each edge fixing. When a node is fixed as an end,
no operation is applied on the input genomes, thus the lower bound equals
that of the previous step. At each end fixing, we record the number of newly
generated SGk-path, k ∈ Q, of length 0, where S denotes the partial solution.
Thus when a complete solution is available, we will also know the total SGk-
paths in M(S) ∪M1, . . . ,M(S) ∪Mq.

In the implementation, the initial lower bound LD is computed form the input
genomes. The branch-and-bound starts searching for a PMP solution of target
value T = LD and tries another gene as soon as the lower bound for the current
partial solution is greater than T . If a solution of value T is found, it is optimal
and we stop, otherwise there is no solution of value LD. The algorithm then
restarts with an increased target value T = LD+1, and so on. The search stops
as soon as we find a solution with the target value. All the partial solutions
tested under target value T will be reconsidered under T + 1. The computation
with T +1 is typically much longer than the previous one, therefore the running
time is dominated by the running time of the last target value.

4.4 Branch-and-Bound Algorithm for RMP

The above PMP algorithm can easily be modified to find the optimal RMP so-
lutions. There are two modifications. First, the initial target value of the median
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score is computed as
�q−1

k=1
�q

l=k+1 dHP (Gk,Gl)

q−1 . Second, when a complete solution
whose lower bound is not greater than T is available, we compute the sum of HP
distances between this solution and the input genomes. If the sum equals T , the
algorithm stops, and the current solution is optimal. If there is no such solution,
no genome exists whose sum of HP distances between it and the input genomes
is better than T + 1. We increase the target value by 1 and start the algorithm
again. Though some non-optimal solutions can pass the lower bound test, they
can not pass the HP distance test. But any optimal genome that passes the
lower bound test will also pass the HP distance test according to Theorem 1.
The first optimal genome (there may be several) encountered will be outputted
as the optimal RMP solution.

5 Experimental Results

We have implemented the algorithm and conduct simulations to assess its perfor-
mance. Our implementation is based on Caprara’s unichromosomal median solver
and uses MGR’s code for multichromosomal reversal distance computation.

In our simulation study, each genome has 100 and 200 genes, with 2 and
4 chromosomes respectively. We create each dataset by first generating a tree
topology with three leaves, assigning it with different edge lengths. We assign
a genome G0 to the root, then evolve the signed permutation down the tree,
applying along each edge a number of operations equal to the assigned edge
length. We test a large range of evolutionary rates: letting r denote the expected
number of evolutionary events along an edge of the model tree, we used values
of r in the range of 4 to 32 for datasets with 100 genes, and 4 to 40 for datasets
with 200 genes. The actual number of events along each edge is sampled from
a uniform distribution on the set {1, 2, . . . , 2r}. We compare our new method
with MGR and use two criteria to assess the accuracy: the median score which
can be computed by summing the three edge lengths, and the multichromosomal
reversal distance from the inferred median to the true ancestor which is known
in our simulation.

Table 1 shows the median score for these two methods. When the genomes are
closed (smaller r values), both methods return the same score. When r increases,

Table 1. Comparisons of the average median scores for 100 genes/2 chromosomes (top)
and 200 genes/4 chromosomes (bottom)

r=4 r=8 r=12 r=16 r=20 r=24 r=28 r=32

Our Method 11.1 22.6 39.0 55.2 63.4 72.6 76.1 84.2

MGR 11.1 22.6 39.0 55.2 63.5 73.3 77.4 86.5

r=4 r=8 r=16 r=24 r=32 r=40

Our Method 11.8 22.0 45.2 78.0 98.8 111.6

MGR 11.8 22.0 45.2 78.0 98.8 112.2
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Table 2. The average reversal distances from the inferred median to the true ancestor,
for 100 genes/2 chromosomes (top) and 200 genes/4 chromosomes (bottom)

r=4 r=8 r=12 r=16 r=20 r=24 r=28 r=32

Our Method 0 0.1 0 0.6 1.0 3.1 1.8 4.4

MGR 0 0.1 0 0.6 1.7 3.4 3.7 5.4

r=4 r=8 r=16 r=24 r=32 r=40

Our Method 0 0.1 0 0 0 0.8

MGR 0 0.2 0 0 0 1.8

Table 3. The average time (in seconds) used for 100 genes/2 chromosomes (top) and
200 genes/4 chromosomes (bottom)

r=4 r=8 r=12 r=16 r=20 r=24 r=28 r=32

Our Method <1 <1 <1 12 6 149 203 411

MGR <1 2 6 17 27 32 46 95

r=4 r=8 r=16 r=24 r=32 r=40

Our Method <1 <1 11.0 115.2 361.5 866.2

MGR < 1 1.2 11.1 57.6 134.3 184.4

our method performs better by returning solutions with smaller scores. Although
the difference of median scores seems small, in genome rearrangement analysis
based on parsimony, such difference will have a big impact on the accuracy of
phylogenies [11].

Table 2 shows the reversal distance of the inferred median to the true ancestor.
Both MGR and our new method return solutions that are very close to the true
ancestors, especially for datasets with 200 genes. Our new method is superior to
MGR when the genomes become distant (for example, r ≥ 16 for 100 genes).

Table 3 shows the average run time. Surprisingly, our method is faster when
the genomes are not distant. However, it is much slower when the edge lengths
increase and it cannot finish many datasets with r larger than the values in this
experiment. For datasets with very large evolutionary rates, the edit distance will
severely under-estimate the true distance, hence all median-based approaches
will become unreliable.

6 Conclusions

In this paper we present a new branch-and-bound method for the multichro-
mosomal reversal median problem. Our extensive experiments show that this
method is more accurate than existing methods. However, this method is still
primitive needs further improvements. In recent years, the double-cut-and-join
(DCJ) distance has attracted much attention. We find that the lower bound
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used in this paper is indeed very similar to the DCJ distance [2], thus it may be
relatively easy to extend our work and develop a new DCJ median solver.
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Decompositions of Multiple Breakpoint Graphs

and Rapid Exact Solutions

Andrew Wei Xu and David Sankoff
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Abstract. The median genome problem reduces to a search for the ver-
tex matching in the multiple breakpoint graph (MBG) that maximizes
the number of alternating colour cycles formed with the matchings repre-
senting the given genomes. We describe a class of “adequate” subgraphs
of MBGs that allow a decomposition of an MBG into smaller, more eas-
ily solved graphs. We enumerate all of these graphs up to a certain size
and incorporate the search for them into an exhaustive algorithm for
the median problem. This enables a dramatic speedup in most randomly
generated instances with hundreds or even thousands of vertices, as long
as the ratio of genome rearrangements to genome size is not too large.

1 Introduction

The median problem underlies one approach to phylogenetics based on genomic
distance. The idea, illustrated in Figure 1, is to optimize each ancestral node
of an unrooted phylogeny in terms of its three or more immediate neighbours,
modern or ancestral, and to iterate across the tree until convergence of the
objective function (to a local optimum) at all nodes. This approach to the “small
phylogeny” problem (i.e., the graph structure of the tree is given and does not
need to be inferred, in contrast to the “big phylogeny problem”) has a decade
of history in the study of genome rearrangement [7,6,2,1], though its use in
sequence-based phylogenetics dates to the 1970s [8].

In the study of genome rearrangement, genomes are treated as signed permu-
tations on 1, . . . , n, either circular or linear, sometimes fragmented into chromo-
somes. The metric d on the set of genomes is an edit distance that counts the
minimum number of operations required to transform one genome into another.
The allowed operations may include the reversal of a contiguous chromosomal
fragment, which also switches the sign on each term in the scope of the reversal;
translocation, which involves the exchange of suffixes or prefixes of two chromo-
somes; transposition, or the excision of a contiguous chromosomal fragment and
its re-insertion elsewhere on the chromosome; and a limited number of other op-
erations. While distances involving reversals and translocations only can be cal-
culated in time linear in n [4,10], the complexity of allowing transpositions in the
distance calculation, either alone or in combination with reversals and translo-
cations, is unknown. Recently, by generalizing the operation of transposition to
that of block interchange [12], it became possible to include transpositions with
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Fig. 1. Left: unrooted phylogeny with open dots representing ancestral genomes to be
inferred. Middle: median problem with three given genomes g, h and k and median q
to be inferred. Right: decomposition of phylogeny into overlapping median problems.

reversals and translocations in genomic distance calculations, within a frame-
work known as “double cut and join” (DCJ). Moreover, the DCJ framework
allows for substantial mathematical simplification of the distance calculation.

The median problem for genomic rearrangement distances in NP-hard [3,9].
Algorithms have been developed to find exact solutions for small instances [3,6]
and there are rapid heuristics of varying degrees of efficiency and accuracy [2,1,5].
In the present paper, we explore the hypothesis that although there are no worst-
case guarantees, it is worthwhile to develop methods to rapidly detect instances
which are easily solved exactly.

Because of its simple structure, we choose to work with DCJ distance d as most
likely to yield non-trivial mathematical results. We require genomes to consist
of one or more circular chromosomes, but this is for simplicity of presentation,
and our results could fairly easily be extended to genomes with multiple linear
chromosomes. Then the median problem is to find a genome q with the smallest
total distance

∑
g∈G d(q, g), for a given set of genomes G.

The mathematical analysis of genomic distances generally invokes the break-
point graph, which we will describe in Section 2. For DCJ, we have d(g, h) = n−c,
where n is the number of genes in genomes g and h, and c is the number of cycles
in the breakpoint graph. We define adequate subgraphs of the breakpoint graph,
and key graph transformations in Section 2, and we demonstrate in Section 3
how to decompose large instances of median problems into smaller instances.
This effectively reduces the search space of the median problem and makes it
possible to design algorithms applicable to most instances of interest to biol-
ogists. In Sections 4 and 5, we sketch some of the considerations involved in
these algorithms and describe the results of simulations on various data sets.
The full development of the algorithm and its application to them are detailed
in reference [11].
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2 Graph and Subgraph Structures

2.1 Breakpoint Graph

We construct the breakpoint graph of two genomes as in Figure 2 by representing
each gene by an ordered pair of vertices, adding coloured edges to represent the
adjacencies between two genes, red edges for one genome and blue for the other.

In a genome, every gene has two adjacencies, one incident to each of its two
endpoints, since it appears exactly once in that genome. Then in the breakpoint
graph, every vertex is incident to one red edge and one blue one. Thus the
breakpoint graph is a 2-regular graph which automatically decomposes into a
set of alternating-colour cycles.

-6 +1 -1 +2 -2 +3 -3 +4 -4 +5 -5 +6

Fig. 2. Breakpoint graph for blue genome 1 -5 -2 3 -6 -4 (in gray) and red genome 1 2
3 4 5 6 (in black)

The edges of one colour form a perfect matching of the breakpoint graph,
which we will simply refer to as a matching, unless otherwise specified. By the
red matching, we mean the matching consisting of all the red edges.

The size for breakpoint graphs, multiple breakpoint graphs and median graphs
is defined as half the number of vertices in it, which also equals to the number
of genes in each genome and the size of each perfect matching.

2.2 Multiple Breakpoint Graph and Median Graph

The breakpoint graph extends naturally to a multiple breakpoint graph (MBG),
representing a set G of three or more genomes. The number of genomes NG ≥ 3
in G is also the edge chromatic number of the MBG. The colours assigned to
the genomes are labeled by the integers from 1 to NG . We will use B(G) or B
throughout to refer to the MBG of the genomes G.

For a given distance d, the median problem for G = {g1, . . . , gNG} is to find
a genome q which minimizes

∑NG
i=1 d(gi, q). For a candidate median genome, we

use a different colour for its matching E, namely colour 0. Adding E to the MBG
B(G) results in the median graph ME(G) = B(G) ∪ E.

The set of all possible candidate matchings is denoted by E . The set of all
possible median graphs is M(G) = {M = B(G) ∪ E : E ∈ E}.

The 0-i cycles in a median graph with matching E, numbering c(0, i) in all,
are the cycles where 0-edges and i edges alternate. Let cE(B) =

∑NG
i=1 c(0, i).

Then cmax(B) = max{cE(B) : E ∈ E} is the maximum number of cycles that
can be constructed from B.
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Minimizing the total distance in the median problem is equivalent to finding
an optimal matching E, i.e., with cE(B) = cmax(B). Let E�(B) be the set of all
optimal matchings.

2.3 MBG Subgraphs and Connecting Edges

Let V(G) and E(G) be the sets of vertices and edges of a regular graph G. A
proper subgraph H of G is one where V(H) = V(G) and E(H) = E(G) do not
both hold at the same time. An induced subgraph H of G is the subgraph which
satisfies the property that if x, y ∈ V(H) and (x, y) ∈ E(G), then (x, y) ∈ E(H).

In this paper, we will focus on the induced proper subgraphs, with an even
number of vertices, of an MBG. Half of the number of these vertices is defined
as the size of the subgraph H , denoted by m. E(H) is the set of all perfect
0-matchings E(H), the cycle number determined by H and E(H) is cE(H)(H),
and cmax(H) is the maximum number of cycles that can be constructed from
H by adding some E(H). A 0-matching E�(H) with cE�(H)(H) = cmax(H) is
called an optimal local matching, and E�(H) is the set of such matchings.

The connecting edges of a subgraph H in an MBG B(G) are the edges of
B(G) incident to H exactly once, and are denoted by K(H). The complementary
induced subgraph of H in B(G), denoted as H , is the subgraph of B(G) induced
by V(B)−V(H). Note that B(G) = H +K(H)+H, as illustrated in Figure 3.

2.4 Crossing Edges and Decomposers

For an MBG B and a subgraph H , a potential 0-edge would be H-crossing
if it connected a vertex in V(H) to a vertex in V(H). A candidate matching
containing one or more H-crossing 0-edges is an H-crossing candidate. A MBG
subgraph H is called a decomposer if for any MBG containing it, there is an
optimal matching that is not H-crossing. It is a strong decomposer if for any
MBG containing it, all the optimal matchings are not H-crossing.

For an MBG B, the search space for an optimal matching is E , which is of
size (2n − 1)!! = (2n)!

2nn! . If B contains a (strong) decomposer H of size m, then
the search can be limited to the smaller space E(H) × E(H) = {E = EH ∪EH :
EH ∈ E(H), EH ∈ E(H)}, which is of size (2m− 1)!! · (2n− 2m− 1)!!.

2.5 Adequate and Strongly Adequate Subgraphs

In an MBG for a set of genomes G, a connected subgraph H of size m is an
adequate subgraph if cmax(H) ≥ 1

2mNG ; it is strongly adequate if cmax(H) >
1
2mNG .

A (strongly) adequate subgraph H is simple if it does not contain another
(strongly) adequate subgraph as an induced subgraph; deleting any vertex from
H will destroy its adequacy. In addition, a simple (strong) adequate subgraph H
is minimal if we cannot even delete any edges without destroying its adequacy,
i.e., for any edge e ∈ E(H), cmax(H − e) < 1

2mNG (cmax(H − e) ≤ 1
2mNG).
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Fig. 3. MBG and median graph. Thick, gray, double and thin edges denote the edges
with colours 1, 2, 3 and 0 correspondingly. (a) An MBG based on three genomes, (1 2
3 4 5 6), (1 -5 -2 3 -6 -4) and (1 3 5 -4 6 -2). A subgraph H , the connecting edge set
K(H) and the complementary subgraph H are illustrated. (b) A median graph. The
candidate matching is divided into three 0-edge sets: E0, E1 and E2.

2.6 Edge Shrinking, Expansion and Contraction

To shrink an edge e in a graph B, delete its two end vertices and any edges
(including e) parallel to e, then for the edges incident to the deleted vertices,
replace each pair of edges of same colour by a single edge of that colour, produc-
ing a new graph B ◦ e, as illustrated by Fig 4(a)–(c). To shrink a set of edges A,
shrink the edges in A one by one in any order, producing B ◦A.

To expand a 0-edge (a, b) in a graphB, remove that edge, add two new vertices
i and j to the graph, connect i and j by NG edges with colours ranging from 1
to NG , and add 0-edges (a, i) and (b, j), as illustrated by Fig 4(c) following the
upward arrow.
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i j

(a)

i j

(b)

i j

(c)

i j

k

(d)

Fig. 4. Edge shrinking, expansion and contraction in a median graph based on 3
genomes: the downward arrows in (a), (b) and (c) illustrate edge shrinking in various
situations; (c) the upward arrow illustrates an expansion of a thin edge; (d) illustrates
a contraction of a thin edge

Proposition 1. If median graph M ′ is obtained from another median graph M
by expanding some 0-edge, then they contain the same number of cycles, i.e.
c(M ′) = c(M).

To contract a 0-edge e from a graph G, delete e and merge its two end vertices,
resulting in the graph G/e, as illustrated by Fig 4(d).

3 An Adequate Subgraph Is a Decomposer

In this section, we prove our main result: every (strongly) adequate subgraph is
a (strong) decomposer. The general idea of the proof is that if H is a (strongly)
adequate subgraph of MBG B(G), for any H-crossing candidate matching E,
we can always find another candidate matching E′ that is not crossing, with
cE′(B) ≥ cE(B) (or cE′(B) > cE(B)).

We partition the 0-edges in E among three sets: E0, the set of 0-edges not
incident to H ; E1, those incident to H exactly once; and E2, those incident to H
twice. In the median graph M = B∪E, we shrink the 0-edge set E0 and expand
each 0-edge in E2. The resultant median graph illustrated by Fig 5(a) is called
the twin median graph, denoted by

◦ •
M =

◦ •
B ∪ ◦ •

E .
If the 0-edges of a cycle in M are all in E0, then after shrinking all 0-edges in

E0, this cycle does not appear in
◦ •
M. If a cycle in M contains 0-edges in E1 or E2,

then with only part of the cycle being shrunk, this cycle does appear in
◦ •
M. Denote

cE0(B) as the number of cycles formed by B and 0-edges in E0 only. Then

Proposition 2

cE(B) = cE0(B) + c◦ •
E

(
◦ •
B ) (1)

Since E0 is not incident to the subgraph H , shrinking E0 does not affect H . So
H remains in

◦ •
M. Denote the subgraph in

◦ •
M induced by V(H) as F . If a pair

of connecting edges with colour i in M , is connected by a 0-i alternating colour
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Fig. 5. Twin median graph and symmetrical median graph. (a) The twin median graph
is obtained from the median graph in Figure 3b by shrinking the 0-edge set E0 and
expanding the 0-edge set E2. (b) is the corresponding symmetric graph, with the left
part mirror-symmetric to the right part.

path, with all 0-edges in E0, then after shrinking E0, this pair of i-edges are
merged into a new i-edge e, with both ends incident to V(H). Edges like e are
contained in F but not in H . Thus

Proposition 3. Suppose
◦ •
B is a twin MBG constructed from B based on a sub-

graph H of size m, and F is the subgraph in
◦ •
B induced by V(H). Then F is of

size m and F ⊇ H. If H is a (strongly) adequate subgraph, then so is F .

Suppose the number of connecting edges in K(F ) of the twin MBG
◦ •
B is 2k.

The 0-edges in
◦ •
M denoted by

◦ •
E are either from E1 or the new added ones when

expanding E2. All of them are incident to F exactly once, so each 0-edge in
◦ •
E

is F -crossing. Then F and F must be of the same size.
The 0-edges in

◦ •
E can be viewed as a mapping from the vertex set V(F ) to

V(F ). If under this mapping, F is isomorphic to F , as illustrated by Fig 5(b)
then we call the twin median graph a symmetrical median graph, and we denote
it by

◦ ◦
M.

In any twin median graph, the size of an alternating colour cycle is at least 1,
which is only possible when a 0-edge is parallel to a connecting edge. All other
cycles have minimum size 2. We have

Proposition 4. If in a twin median graph
◦ •
M, any cycle containing a connecting

edge is of size 1 and any other cycle is of size 2, then
◦ •
M contains the largest

possible number of cycles among all twin median graphs formed from
◦ •
B . The

maximum cycle number is mNG + k. This can be achieved only when
◦ •
M is a

symmetrical median graph
◦ ◦
M.

Proof. Since there are 2k connecting edges, the number of cycles of size 1 must
be 2k. Then the number of remaining non-0 edges is 2mNG − 2k. Hence there
are mNG − k cycles of size 2. The maximum total number of cycles is mNG + k.
Because of the symmetry of

◦ ◦
M, the other cycles can only be of size 2. Hence

◦ ◦
M

is the only twin median graph containing the maximum number of cycles. ��
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Fig. 6. The contracted twin graph (a) and contracted symmetric graph (b). The con-
tracted graphs are generated from a twin median graph by contracting 0-edges. Dashed
edges are from the complementary subgraphs and the half-solid-half-dashed ones are
the connecting edges.

Next we investigate the difference between a twin median graph
◦ •
M and a sym-

metric median graph
◦ ◦
M , in terms of the number of DCJ operations needed to

transform one into another.

Lemma 1. If
◦ •
M is a twin median graph and

◦ ◦
M is the symmetric median graph,

then we can transform one into the other by exactly mNG + k − c(
◦ •
M) DCJ

operations on non 0-edges.

Proof. We construct the contracted graph, illustrated in Figure 6, by contracting
0-edges of a median graph

◦ •
M , where edges in F are represented by dashed lines

and the connecting edges are represented by half-dashed, half-solid lines with the
solid end incident to F and the dashed end incident to F . For conciseness, when
we say solid edges (dashed edges), we mean the solid (dashed) edges contained
by F (F ) or the solid (dashed) ends of connecting edges. The contracted graph
for

◦ •
M is denoted by

◦•
M and the contracted graph for

◦ ◦
M is denoted by

◦◦
M.

Comparing the median graph
◦ •
M and the contracted graph

◦•
M, it easy to see

that each vertex in
◦•
M has degree 2NG , incident to NG solid edges and NG dashed

edges. The 0-i alternating colour cycle in
◦ •
M becomes the alternating pattern

(solid/dashed) cycle with colour i. The number of alternating pattern cycles is
equal to the number of alternating colour cycles. Thus there are c(

◦ •
M) pattern

alternating cycles in
◦ •
M and mNG + k cycles in

◦◦
M.

To transform
◦•
M to

◦◦
M, we can show that there always exists a DCJ operation

on two dashed edges with the same colour that increases the cycle number by
one. When a connecting edge does not form a loop, apply a DCJ operation to
loop it. Then arbitrarily select a solid edge from a cycle with size more than 2,
apply a DCJ operation to make a dashed edge parallel to it. Thus with a number
mNG + k − c(

◦ •
M) DCJ operations, we can transform

◦ •
M to

◦ ◦
M or vice versa. ��

Proposition 5. An arbitrary DCJ operation on non-0 edges in a median graph
changes the cycle number by 1, 0, or -1.
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Proof. If the two edges belong to one cycle, it will either split into two cycles or
remain as a single cycle. If the two edges belong to two cycles, then they will be
joined into one cycle. ��

Theorem 1. If H is a (strongly) adequate subgraph of MBG B and E is a H-
crossing candidate matching, then there is a candidate matching E′ which is not
H-crossing, with cE′(B) ≥ cE(B) (or cE′(B) > cE(B)).

Proof. 1. From the median graph M = B ∪ E, construct the twin median
graph

◦ •
M and twin MBG

◦ •
B by shrinking 0-edges not incident to H (E0)

and expanding 0-edges incident to H twice (E2). Denote the subgraph of
◦ •
M

induced by V(H) as F . Then cE(B) = cE0(B) + c◦ •
E

(
◦ •
B ).

2. Construct the symmetrical median graph
◦ ◦
M with F = F and F also a

(strongly) adequate subgraph.
3. Since F is a (strongly) adequate subgraph, there exists a 0-matching D of

F satisfying cD(F ) ≥ 1
2mNG (or cD(F ) > 1

2mNG).
4. Replace the 0-matching in

◦ ◦
M by two copies of D, one on F and one on F .

Denote the 0-matching as 2D and denote the resultant median graph as
◦ ◦
B ∪ 2D, with c2D(

◦ ◦
B ) ≥ mNG (or > mNG).

5. Transform
◦ ◦
B to

◦ •
B by mNG + k − c(

◦ •
M) DCJ operations on F in

◦ ◦
B . So

c2D(
◦ •
B ) ≥ c◦ •

E
(

◦ •
B ) (or c2D(

◦ •
B ) > c◦ •

E
(

◦ •
B )).

6. Shrink the newly added sets ofNG parallel edges in
◦ •
B and reverse the shrink-

ing operations on E0 in step 1, to recover the MBG B. Then the 0-matching
2D becomes the candidate matching E′ and the new median graph becomes
M ′ = B ∪ E′. Then cE′(B) = c2D

◦ •
B + cE0(B). Thus cE′(B) ≥ cE(B) (or

cE′(B) > cE(B)). ��

Theorem 2. Any adequate subgraph is a decomposer. A strongly adequate sub-
graph is a strong decomposer.

Proof. For an adequate subgraph there must be a optimal matching that is not
crossing. Otherwise by Theorem 1, from the optimal crossing matching, we can
construct a candidate matching that is not crossing and has at least as many
cycles. Thus the adequate subgraph is a decomposer.

For a strongly adequate subgraph, the non-crossing candidate matchings are
always better than the corresponding crossing candidate matchings. Then the
optimal matchings cannot be crossing matchings. The strongly adequate sub-
graph is thus a strong decomposer. ��

4 Median Calculation Incorporating MBG Decomposition

As adequate subgraphs are the key to decompose the median problems, we need
to inventory them before making use of them. It turns out that it is most useful
to limit this project to simple adequate graphs. Non-simple adequate graphs are
both harder to enumerate and harder to use, and are likely to have simple ones
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Fig. 7. Simple adequate subgraphs of size 1, 2 and 4 for MBGs on three genomes. See
reference [11] for how they were identified.

embedded in them, which serve the same general purpose [11]. By exhaustive
search, we have found all simple adequate graphs of size < 6; these are depicted
in Figure 7. Though we have some of size 6, it would be a massive undertaking
to compile the complete set with current methods.

Our basic algorithm for solving the median problem is a branch and bound,
where edges of colour 0 are added at each step; we omit the details of proce-
dures we use to increase the effectiveness of the bounds. To make use of the
adequate subgraph theory we have developed, at each step we search for such
an inventoried subgraph before adding edges, and if one is found, we carry out
a decomposition and then solve the resulting smaller problem(s) [11].

Table 1. The number of runs, out of ten, where the median was found in less than 10
minutes on a MacBook, 2.16GHz, on one CPU

ρ/n n 10 20 30 40 50 60 80 100 200 300 500 1000 2000 5000

0.1 10 10 10 10 10 10 10 10 10 10 10 10 10 10
0.2 10 10 10 10 10 10 10 10 10 10 10 10 10 10
0.3 10 10 10 10 10 10 10 10 10 10 10 10 1
0.4 10 10 10 10 10 10 10 10 0 0
0.5 10 10 10 10 10 10 4 0
0.6 10 10 10 10 9 6
0.7 10 10 10 10 6
0.8 10 10 10 10 6
0.9 10 10 10 10 4
1.0 10 10 10 8 2
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Table 2. Speedup due to discovery of larger adequate subgraphs (AS2, AS4). Three
genomes are generated from the identity genome with n = 100 by 40 random reversals.
Time is measured in seconds. Runs were halted after 10 hours. AS1, AS2, AS4, AS0 are
the numbers of edges in the solution median constructed consequent to the detection
of adequate subgraphs of sizes 1, 2, 4 and at steps where no adequate subgraphs were
found, respectively.

speedup run time number of edges
run factor with AS1,2,4 with AS1 AS1 AS2 AS4 AS0

1 41,407 4.5 × 10−2 1.9 × 103 53 39 8 0
2 85,702 3.0 × 10−2 2.9 × 103 53 34 12 1
3 2,542 5.4 × 100 1.4 × 104 56 26 16 2
4 16,588 3.9 × 10−2 6.5 × 102 58 42 0 0
5 > 106 5.9 × 102 stopped 52 41 4 3
6 199,076 6.0 × 10−3 1.2 × 103 56 44 0 0
7 6,991 2.9 × 10−1 2.1 × 103 54 33 12 1
8 > 106 4.2 × 101 stopped 57 38 0 5
9 1,734 8.7 × 100 1.5 × 104 65 22 8 5
10 855 2.1 × 100 1.8 × 103 52 38 8 2

5 Experimental Results

To see how useful our method is on a range of genomes, we undertook experi-
ments on sets of three random genomes. Our JAVA program included a search
for adequate subgraphs followed by decomposition at each step of a branch and
bound algorithm to find the maximum number of cycles. We varied the parame-
ters n and π = ρ/n, where ρ was the number of random reversals applied to the
ancestor I = 1, . . . , n independently to derive three different genomes.

5.1 The Effects of n and π = ρ/n on the Proportion of Rapidly
Solvable Instances

Table 1 shows that relatively large instances can be solved if ρ/n remains at 0.3
or less. It also shows that for small n, the median is easy to find even if ρ/n is
large enough to effectively scramble the genomes.

5.2 The Effect of Adequate Subgraph Discovery on Speed-Up

Table 2 shows how the occurrence of larger adequate subgraphs (AS2 and AS4)
can dramatically speed up the solution to the median problem, generally from
more than a half an hour to a fraction of a second.

5.3 Time to Solution

Our results in Section 5.1 suggest a rather abrupt cut-off in performance as n or
ρ/n become large. We explore this in more detail by focusing on the particular
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Fig. 8. Cumulative proportion of instances solved, by run time. n = 1000, ρ/n = .31.
More than half are solved in less than 2 minutes; almost half take more than 20 minutes.

parameter values n = 1000 and ρ/n = .31. Figure 8 shows how the instances
are divided into a rapidly solvable fraction and a relatively intractable fraction,
with very few cases in between.

6 Conclusion

In this paper we have demonstrated the potential of adequate subgraphs for
greatly speeding up the solution of realistic instances of the median problem.
Many improvements seem possible, but questions remain. If we could inven-
tory non-simple adequate graphs, or all simple adequate graphs of size 6 or
more, could we achieve significant improvement in running time? It may well be
that the computational costs of identifying larger adequate graphs within MBGs
would nullify any gains due to the additional decompositions they provided.
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Abstract. Single Molecule Sequencing technologies such as the Helis-
cope simplify the preparation of DNA for sequencing, while sampling
millions of reads in a day. Simultaneously, the technology suffers from a
significantly higher error rate, ameliorated by the ability to sample mul-
tiple reads from the same location. In this paper we develop novel rapid
alignment algorithms for two-pass Single Molecule Sequencing methods.
We combine the Weighted Sequence Graph (WSG) representation of all
optimal and near optimal alignments between the two reads sampled
from a piece of DNA with k-mer filtering methods and spaced seeds
to quickly generate candidate locations for the reads on the reference
genome. We also propose a fast implementation of the Smith-Waterman
algorithm using vectorized instructions that significantly speeds up the
matching process. Our method combines these approaches in order to
build an algorithm that is both fast and accurate, since it is able to
take complete advantage of both of the reads sampled during two pass
sequencing.

1 Introduction

Next generation sequencing (NGS) technologies are revolutionizing the study
of variation among individuals in a population. While classical, Sanger-style
sequencing machines were able to sequence 500 thousand basepairs per run
at a cost of over $1000 per megabase, new sequencing technologies, such as
Solexa/Illumina and AB SOLiD can sequence 4 billion nucleotides in the same
amount of time, at the cost of only $6 per megabase. The decreased cost and
higher throughput of NGS technologies, however, are offset by both a shorter
read length and a higher overall sequencing error rate.

Most NGS technologies reduce the cost of sequencing by running many se-
quencing experiments in parallel. After the input DNA is sheared into smaller
pieces, DNA libraries are prepared by a Polymerase Chain Reaction (PCR)
method, with many identical copies of the molecules created, and attached to
a particular location on a slide. All of the molecules are sequenced in parallel
using sequencing by hybridization or ligation, with each nucleotide producing a
specific color as it is sequenced. The colors for all of the positions on the slide
are recorded via imaging and are then converted into base calls.

K.A. Crandall and J. Lagergren (Eds.): WABI 2008, LNBI 5251, pp. 38–49, 2008.
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In this paper we address a specific type of NGS technology – Single Molecule Se-
quencing (SMS). While the origins of SMS date back to 1989 [3], it is only now be-
coming practical. The Heliscope sequencer, sold by Helicos, is the first commercial
product that allows for the sequencing of DNA with SMS. In a recent publication,
the complete genome of the M13 virus was resequenced with the Heliscope [4]. The
key advantage of the SMS methods over other NGS technologies is the direct se-
quencing of DNA, without the need for the PCR step described above. PCR has
different success rates for different DNA molecules, and introduces substitutions
into the DNA sequence as it is copied. Additionally, the direct sequencing of DNA
via SMS significantly simplifies the preparation of DNA libraries. SMS methods
should also lead to more accurate estimates of the quantity of DNA which is re-
quired for detection of copy number variations and quantification of gene expres-
sion levels via sequencing. SMS technologies have very different error distribution
than standard Sanger-style sequencing. Because only one physical piece of DNA is
sequenced at a time, the sequencing signal is much weaker, leading to a large num-
ber of “dark bases”: nucleotides that are skipped during the sequencing process
leading to deletion errors. Additionally, a nucleotide could be mis-read (substi-
tution errors), or inserted, however these errors are more typically the result of
imaging, rather than chemistry problems, and hence are rarer. A full description
of SMS errors is in the supplementary material of [4].

One advantage of the Heliscope sequencer, as well as several other proposed
SMS technologies (e.g. Pacific Biosciences’ expected method) is the ability to
read a particular piece of DNA multiple times (called multi-pass sequencing).
The availability of multiple reads from a single piece of DNA can help con-
firm the base calls, and reduce the overall error rate. In practice these methods
usually use two passes, as this offers a good tradeoff between error rate and
cost. In this paper we introduce a novel rapid alignment algorithm for multi-
pass single molecule sequencing methods. While we will use the most common
case of two-pass sequencing to describe our algorithms, they can be easily ex-
tended to a larger number of passes. We combine the Weighted Sequence Graph
(WSG) [11] representation of all optimal and near optimal alignments between
the two reads sampled from a piece of DNA with k-mer filtering methods [9]
and spaced seeds [1] to quickly generate candidate locations for the reads on the
reference genome. We also propose a novel, fast implementation of the Smith-
Waterman algorithm [12] using vectorized instructions that significantly speeds
up the matching process. Our algorithms are implemented as part of the SHort
Read Mapping Package (SHRiMP). SHRiMP is a set of tools for mapping reads
to a genome, and includes specialized algorithms for mapping reads from pop-
ular short read sequencing platforms, such as Illumina/Solexa and AB SOLiD.
SHRiMP is freely available at http://compbio.cs.toronto.edu/shrimp.

2 Algorithms

In this section we will describe the alignment algorithms we use for mapping two
reads generated from a single DNA sequence with SMS to a reference genome.
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We will start (Sections 2.1 and 2.2) by reviewing how the Weighted Sequence
Graph data structure [11] can be used to speed up the inherently cubic naive
alignment algorithm to near-quadratic running time. We will then demonstrate
how to combine the WSG alignment approach with standard heuristics for rapid
alignment, such as seeded alignment and k-mer filters in Section 2.3. Finally,
we will describe our implementation of the Smith-Waterman alignment algo-
rithm with SSE vector instructions to further speed up our algorithm, making
it practical for aligning millions of reads against a long reference genome.

2.1 Alignment with Weighted Sequence Graphs

Given unlimited computational resources, the best algorithm for mapping two
reads sampled from the same location to the reference genome is full three-
way alignment. This algorithm would require running time proportional to the
product of the sequence lengths. Because the reads are typically short (∼30bp),
the overall running time to map a single read pair to a genome of length n may
be practical (30 ∗ 30 ∗ n = 900n), however the naive algorithm will not scale to
aligning millions of reads that an SMS platform produces every day.

An alternative approach, suggested in [4], is to align the two reads to each
other, thus forming a profile, which could then be aligned to the reference

Fig. 1. An example of a WSG graph representing 1-suboptimal alignments of CTGACT
with CAGCAT. (A). Optimal alignments of score 9 and two 1-suboptimal of score 8;
two more 1-suboptimal alignments are possible. (B). Cells of the dynamic programming
matrix such that the best path through them is 9 are shaded in light grey, if it is 8 –
in dark grey. (C). WSG corresponding to at worst 1-suboptimal alignments.
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genome. This approach, akin to the standard “progressive” alignment approaches
used, e.g., in CLUSTALW [2], has the advantage of significantly decreased run-
time, as the running time becomes proportional to the product of the lengths of
the genome and the longer read (∼30 times the length of the genome), however,
because the profile only incorporates a single optimal alignment, it loses impor-
tant information about possible co-optimal and suboptimal alignments between
the sequences. For example, Figure 1 demonstrates two short sequences with
two optimal alignments, as well as 4 more near-optimal ones. While the total
number of optimal alignments between two sequences could be exponential in
their lengths, Naor and Brutlag [7] and Hein [6] have suggested that all of these
alignments can be represented compactly using a directed acyclic graph (DAG).
Furthermore, Schwikowski and Vingron [11] have shown how to generalize the
standard sequence alignment paradigms to alignment of DAGs, which they call
weighted sequence graphs. Their original algorithm was stated in the context of
the tree alignment problem, but is easily generalizable to any progressive align-
ment scoring scheme. Here we reintroduce the idea of representing alignments
as graphs, and extend it for the SMS mapping problem.

Definitions. The following definitions will prove useful:

– Given the sequence S of length |S| over an alphabet Σ = {A,C, T,G}, we
refer to its ith symbol as S[i]

– We say that a sequence S′ over alphabet Σ = Σ
⋃

‘− ‘, where character ‘− ‘
is called a gap, spells S if removing the gaps from S′ results in sequence S.
When this does not cause ambiguity, we will write S instead of S′.

– A k-mer is any sequence of length k.
– When addressing matrix indices, we use a notations “i1 : i2”, “: i2”, “i1 :”

and “:” to represent the sets of indices j such that i1 ≤ j ≤ i2, j ≤ i2,
i1 ≤ j and all possible indices respectively. For example, given matrix M of
size K ×N we shall denote the i’th row of the matrix by M [i; :] and its j’th
column by M [:; j].

– A global alignment of 2 sequences S1 and S2 over alphabet Σ is defined as a
matrix M = [2 ×N ] such that M [i; :] spells Si for i = 1, 2.

– Given a real-valued score function sc : Σ × Σ �→ � we define the score SC
of the alignment M = [2 ×N ] as

SC(M) = ΣN
j=1sc(M [:; j])

– The global alignment problem is to find an alignment M such that SC(M) is
maximum. It is known [8] that for any cost function sc satisfying condition
sc(−,−) < 0 the problem is well-defined though its solution is not necessarily
unique. We denote the maximum score with Opt.

– We call an alignment M ε-suboptimal if SC(M) ≥ Opt− ε.

While we defined the alignment for two sequences, the problem for more than
two sequences is defined similarly. In particular, the problem we consider in this
work – an alignment of a pair of sequences S1 and S2 to a reference sequence R
– is to find a high scoring alignment matrix M = [3 ×N ] such that M [i; :] = Si

for i=1 and 2 respectively and M [3; :] is a substring of R.
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Representing (Sub)-optimal Alignments in a Graph. A sequence S can
be represented by a labeled directed graph G′(S) = (V,E) with |S| + 1 nodes
{s = V [0] · · ·V [|S|] = t]} and |S| edges: for every 0 ≤ i < |S| there is an edge
V [i] → V [i+ 1] labeled with S[i] – the i’th symbol of sequence S; vertices s and
t will be called the source and the sink. We obtain the graph G(S) from graph
G′ by adding a self loop edge V [i] → V [i] labeled with a gap symbol ’–’ for every
i. There is a one-to-one correspondence between the sequences over alphabet Σ
spelling sequence S and the sequences produced by reading edge labels along
the paths in G(S) from s to t.

Given two strings, S1 and S2 and two graphs A = G(S1) and B = G(S2), their
cross product A × B is defined as a graph with the vertex set V = {(vA, vB)},
for any vA vertex of A and vB vertex of B, and edge set E = {v1 → v2}, for
any v1 = (v1

A, v
1
B) and v2 = (v2

A, v
2
B), such that there is an edge v1

A → v2
A in A

and an edge v1
B → v2

B in B. The edges of all graphs considered in this work will
be labeled with strings over alphabet Σ; the edge v1 → v2 of the cross product
graph will receive a label which is the concatenation of the labels of an edge
v1

A → v2
A in A and an edge v1

B → v2
B in B.

This cross product graph, sometimes referred to as an edit graph, corresponds
to the Smith-Waterman dynamic programming matrix of the two strings. It is
easy to prove that there is a one-to-one correspondence between the paths from
source s = s1 × s2 to sink t = t1 × t2 and alignments: if the sequence of edges
along the path is e0 · · · eN−1, then the corresponding alignment M is defined as
M(:; j) = label(ej) for all values of j – recall that label(e) is a pair of symbols.
Note that the only cycles in the cross-product graph we just defined are the self
loops labeled with ’– –’ at every node of the graph.

Now a WSG is defined as a subgraph of the cross-product graph such that its
vertex set V contains vertices s, t and for every vertex v ∈ V it is on some path
from s to t. Intuitively, one may think of the WSG as a succinct representation
of a set of alignments between the two strings. We use WSGs in Section 2.2 for
the purpose of representing all high-scoring alignments.

2.2 Alignment of Read Pairs with WSG

During two-pass DNA sequencing, two reads are produced from every fragment
of DNA. Both of the reads may have sequencing errors, the most common of
which are skipped letters. These errors are nearly ten-fold more common than
mis-calls or insertions [4]. Our algorithm for aligning two-pass SMS reads is
based on the intuition that in a high-scoring three-way alignment of a pair of
reads, S1 and S2, to a reference sequence, the alignment of sequences S1 and S2

to each other should also be high-scoring. The algorithm proceeds as follows:

– Build a cross-product graph G′ = (V,E) representing the set of all possible
alignments of S1 and S2, s is the source of G′ , t is the sink.

– For every edge e = u → v in G′ we compute the score of the highest scoring
path from source s to sink t through the edge e; we denote this score as
w(e), the weight of the edge. To do this we use dynamic programming to
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compute the scores of the highest scoring paths from s to every vertex of G′

and of the highest scoring paths, using the edges of G′ reversed, from t to
every vertex of G. Time complexity of this step is O(E).

– For a given suboptimality parameter ε, we build WSG G2 from G′ by dis-
carding all edges such that

w(e) < Opt− ε

where Opt denotes the score of the highest scoring path from s to t in G′.
Observe that while all ε-suboptimal alignments of S1 and S2 correspond to
paths from s to t, in G2, the converse is not true: not all paths from s to t
are ε-suboptimal.

– Align WSG G2 to the reference genome: compute the cross product of G2

and the linear chain that represents the reference sequence, obtaining a WSG
spelling all possible three way alignmentsM , such thatM [1 : 2; :] is one of the
alignments, represented by G2. Finally, use dynamic programming (similar
to Smith and Waterman [12]) to search this graph for the locally optimal
path. The score of this path is the score of mapping the pair of reads at the
given location.

While the use of the WSG leads to a significant speedup compared with the full
3-dimensional dynamic programming, this is still insufficient for the alignment
of many reads to a long reference genome, as the resulting algorithm is at best
quadratic. In the subsequent section we combine the WSG alignment approach
with standard heuristics for rapid sequence alignment in order to further improve
the running time.

2.3 Seeded Alignment Approach for SMS Reads

Almost all heuristic alignment algorithms start with seed generation – the loca-
tion of short, exact or nearly exact matches between two sequences. Whenever
one or more seeds are found, the similarity is typically verified using a slow, but
more sensitive alignment algorithm. The seeds offer a tradeoff between running
time and sensitivity: short seeds are more sensitive than long ones, but lead to
higher running times. Conversely, longer seeds result in faster searches, but are
less sensitive. Our approach for SMS seeded alignment differs in two ways from
standard methods. First, we generate potential seeds not from the observed
reads, but rather from the ε-suboptimal WSGs representing their alignments.
Second, we combine spaced seeds [1] with k-mer-filtering techniques [9] to fur-
ther speed up our algorithm.

Seed Generation. Intuitively, given a read pair and an integer k, the seeds we
want are k-long substrings (k-mers) likely to appear in the DNA segment repre-
sented by the pair and segment’s matching location on the reference sequence.
While k-mers present in each individual read may not match the genome directly
due to the deletion errors introduced during the sequencing process, it is much
less likely that both reads have an error at the same location. Consequently, we
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generate the potential seeds not from the the reads directly, but from the high-
scoring alignments between them. Because every high-scoring alignment between
the reads corresponds to a path through the WSG, we take all k-long subpaths
in the WSG and output the sequence of edge labels along the path. Recall that
each edge of the WSG is labeled by a pair of letters (or gaps), one from each
read. If one of the reads is gapped at the position, we output the letter from the
other read. If neither read is gapped we output a letter from an arbitrary read.
While the number of k-mers we generate per pair of reads can be large if the two
reads are very different, in practice the reads are similar and the WSG is small
and “narrow”. In our simulations (described in the Results section) we saw an
average of 27 k-mers per read-pair for reads of approximately 30 nucleotides.

Genome Scan. Given the sets of k-mers generated from the WSGs of read-
pairs, we build a lookup table, mapping from the k-mers to the reads. We used
spaced seeds [1], where certain pre-determined positions are “squeezed” from the
k-mers to increase sensitivity. We then scan the genome, searching for matches
between k-mers present in the genome and the reads. If a particular read has as
many or more than a specified number of k-mer matches within a given window
of the genome, we execute a vectorized Smith-Waterman step, described in the
next section.

Unlike some local alignment programs that build an index of the genome and
then scan it with each query (read), we build an index of the reads and query
this index with the genome. This approach has several advantages: first, it allows
us to control memory usage, as our algorithm never needs memory proportional
to the size of the genome, while the large set of short reads can be easily divided
between many machines in a compute cluster. Secondly, our algorithm is able to
rapidly isolate which reads have several k-mer matches within a small window
by using a circular buffer to store all of the recent positions in the genome that
matched the read. The genome scan algorithm is illustrated in Figure 2A.

2.4 Vectorized Smith-Waterman Implementation

While the genome scan described in the previous section significantly reduces the
number of candidate regions, many false positives are encountered. To further re-
duce the number of potential mapping positions given to the WSG-based aligner,
we first align both reads to the candidate region using a vectorized implemen-
tation of the Smith-Waterman algorithm. Most contemporary mobile, desktop
and server-class processors have special vector execution units, which perform
multiple simultaneous data operations in a single instruction. For example, it is
possible to add the eight individual 16-bit elements of two 128-bit vectors in one
machine instruction. Over the past decade, several methods have been devised to
significantly enhance the execution speed of Smith-Waterman-type algorithms
by parallelizing the computation of several cells of the dynamic programming
matrix. The simplest such implementation by Wozniak [13] computes the dy-
namic programming matrix using diagonals (See Figure 2B). Since each cell of
the matrix can be computed once the cell immediately above, immediately to the
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(A) (B)

Fig. 2. A. Overview of the k-mer filtering stage within SHRiMP: A window is moved
along the genome. If a particular read has a preset number of k-mers within the win-
dow the vectorized Smith-Waterman stage is run to align the read to the genome. B.
Schematic of the vectorized-implementation of the Smith-Waterman algorithm. The
red cells are the vector being computed, on the basis of the vectors computed in the
last step (yellow) and the next-to-last (green). The match/mismatch vector for the
diagonal is determined by comparing one sequence with the other one reversed (indi-
cated by the red arrow below). To get the set of match/mismatch positions for the
next diagonal the lower sequence needs to be shifted to the right.

left, and at the upper-left corner have been computed, one can compute each suc-
cessive diagonal once the two prior diagonals have been completed. The problem
can then be parallelized across the length of supported diagonals, often lead-
ing to a vectorization factor of 4 to 16. The only portion of such an approach
that cannot be parallelized is the identification of match/mismatch scores for
every cell of the matrix. These operations are done sequentially, necessitating
24 independent, expensive data loads for 8-cell vectors. The approach becomes
increasingly problematic as vector sizes increase because memory loads cannot
be vectorized; when the parallelism grows, so does the number of lookups.

Rognes and Seeberg [10] developed an alternative algorithm with the follow-
ing innovations: first, they avoided the aforementioned loads by pre-calculating
a ’query profile’ before computing the matrix. By pre-allocating vectors with
the appropriate scores in memory, they needed only load a single score vector
on each computation of a vector of cells. The up-front cost in pre-calculation
greatly reduced the expense of computing scores in the crucial, tight inner-loop
of the algorithm. The query profile, however, requires that scores be computed
per-column, rather than for each diagonal. This creates data dependencies be-
tween several cells within the vector. However, the authors took advantage of the
fact that often cells contain the value 0 when computing the Smith-Waterman
recurrence, and any gap continuation would therefore be provably suboptimal.
This enables the conditional skipping of a significant number of steps. Although
highly successful for protein sequences, where only 1/20 elements on average
have a positive score, it is significantly less beneficial for DNA sequences where
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usually at least 1/4 elements in the matrix match. Farrar [5] most recently in-
troduced a superior method: by striping the query profile layout in memory, he
significantly reduced the performance impact of correcting data dependencies.

We propose an alternate method, where the running time of the fully vec-
torized algorithm is independent of the number of matches and mismatches in
the matrix, though it only supports fixed match/mismatch scores (rather than
full scoring matrices). Since SHRiMP only applies a vectorized Smith-Waterman
scan to short regions of confirmed k-mer hits, alternative approaches that benefit
by skipping computation in areas of dissimilarity are unable to take significant
advantage. Figure 2B demonstrates the essence of our algorithm: by storing one
of the sequences backwards, we can align them in such a way that a small num-
ber of logical instructions obtain the positions of matches and mismatches for
a given diagonal. We then construct a vector of match and mismatch scores for
every cell of the diagonal without having to use expensive and un-vectorizable
load instructions or pre-compute a “query profile”. In our tests (see Table 1),
our approach surpasses the performance of Wozniak’s original algorithm [13]
and performs on par with Farrar’s method [5]. The advantages of our method
over Farrar’s approach are simplicity, independence of the running time and the
scores used for matches/mismatches/gaps, and linear scalability for larger vector
sizes. The disadvantages of our method are that it cannot support full scoring
matrices (i.e. it is restricted to match/mismatch scores) and is slower for queries
against large reference sequences where significant areas of dissimilarity are ex-
pected. However, the former is less important for DNA alignment and the latter
does not apply to SHRiMP.

The vectorized Smith-Waterman approach described above is used to rapidly
determine if both of the reads have a strong match to a given region of the
genome. The locations of the top n hits for each read on the genome are stored in
a heap data structure, which is updated after every invocation of the vectorized
Smith-Waterman algorithm if the heap is not full, or if the attained score is
greater than or equal to the lowest scoring top hit. Once the whole genome
is processed, the highest scoring n matches are re-aligned using the full WSG
alignment algorithm described in Section 2.2.

3 Results

In order to test the efficacy of our read mapping algorithm we designed a simu-
lated dataset with properties similar to those expected from the first generation
SMS sequencing technologies, such as Helicos [4]. We sampled 10,000 pairs of reads
from human chromosome one (the total length of the chromosome is approximately
1/10th of the human genome). The first read was sampled to have a mean length
of 30 bases, with standard deviation of 8.9, the second one had a mean length of 26
bases with standard deviation 8.6. The lengths of both reads ranged from 12 to 58
bases. We introduced errors into each of the the reads, with 7% deletion errors and
0.5% insertion and substitution errors uniformly at random. We also introduced
Single Nucleotide Polymorphisms (SNPs) at a rate of 1%.
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Table 1. Performance (in millions of cells per second) of the various Smith-Waterman
implementations, including a regular implementation, Wozniak’s diagonal implemen-
tation with memory lookups, Farrar’s striped algorithm and our diagonal approach
without score lookups (SHRiMP). We used each method within SHRiMP to align 50
thousand reads to a reference genome with default parameters. The improvement of
the Core 2 architecture for vectorized instructions lead to a significant speedup for our
and Farrar’s approaches, while the Wozniak algorithm’s slight improvement is due to
the slow memory lookups.

Processor type Unvectorized Wozniak Farrar SHRiMP

P4 Xeon 97 261 335 338

Core 2 105 285 533 537

Table 2. Comparison of the WSG-based alignment with the two alternative ap-
proaches. The first two rows describe the percentage of reads not mapped anywhere
on the genome or mapped in multiple places (with equal alignment scores). The third
row is the percentage of the unique hits that are correct. The sub-columns under each
method are the number of matching positions in the spaced seed (we allowed for a sin-
gle non-matching character in the middle of the seed). The last row shows the running
time in minutes and seconds on a 2.66 GHz Core2 processor. The best result in each
category is in boldface.

Type SEPARATE PROFILE WSG

seed weight 8 9 10 8 9 10 8 9 10

no hits % 0.000 0.131 2.945 1.741 4.905 10.52 1.609 4.314 10.15

multiple % 30.12 26.45 21.13 10.20 9.342 8.353 10.44 9.127 8.258
unique cor % 63.90 63.00 61.09 78.96 74.90 69.66 79.17 75.84 70.85

runtime 28m16 8m48 4m22 27m17 11m32 6m58 30m59 12m13 7m13

We used three approaches to map the read pairs back to the reference. Our
main approach was the WSG-based alignment algorithm described in Section 2.2.
For comparison we also implemented two alternatives: mapping the reads indi-
vidually, using the version of SHRiMP for Illumina/Solexa, but with the same
parameters as were used for WSG-based mapping in order to properly capture
the high expected deletion rates, and a profile-based approach, which follows
the overall framework of the WSG approach, but only considers a single top
alignment (one path in the WSG) for further mapping to the reference genome.
The methods are labeled WSG, SEPARATE, and PROFILE, respectively, in
Table 2.

We evaluated the performance of these algorithms based on three criteria: the
fraction of the reads that were not mapped at all (lower is better), the fraction of
the reads that were not mapped uniquely (lower is better: while some reads have
several equally good alignments due to repetitive DNA, others map with equal
scores to non-repetitive DNA segments, and this should be minimized), and the
percentage of the reads mapped uniquely and correctly (higher is better). When
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evaluating the two reads separately, we considered a hit unique if either of the
two reads had a unique top hit, and we considered a unique top hit correct if
either of the top hits was correct. We ran all algorithms with three seed weights:
8, 9, and 10, with each spaced seed having a single wildcard character (zero) in
the middle of the seed (e.g. 1111101111 was the spaced seed of weight 9).

As one can see in Table 2, the approach of mapping the reads separately, while
leading to very good sensitivity (almost all reads aligned), has poor specificity
(only 70-78% of the reads have a unique top hit, with 61-64% both unique
and correct). The WSG and PROFILE approaches perform similarly, with the
WSG approach slightly more sensitive and having a higher fraction of unique
correct mappings for all seed sizes.

4 Discussion

In this paper we propose a novel read alignment algorithm for next-generation
Single Molecule Sequencing (SMS) platforms. Our algorithm takes advantage of
spaced k-mer seeds and effective filtering techniques to identify potential areas of
similarity, a novel, vectorized implementation of the Smith-Waterman dynamic
programming algorithm to confirm the similarity and a weighted sequence graph-
based three way final alignment algorithm. Our approach is implemented as
part of SHRiMP, the SHort Read Mapping Package, and is freely available at
http://compbio.cs.toronto.edu/shrimp.

While the overall emphasis of the current paper was read mapping, we believe
that several of our methods may have broader applications. For example, our
implementation of the Smith-Waterman algorithm can be used in other sequence
alignment methods, and unlike previous vectorized implementations the running
time of our algorithm is independent of the scoring parameters. The weighted
sequence graph model could also be useful for ab initio genome assembly of SMS
data, where a variant of our method could be used for overlap graph construction.
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Abstract. In this paper we address the problem of characterizing the
RNA complement of a given cell type, that is, the set of RNA species and
their relative copy number, from a large set of short sequence reads which
have been randomly sampled from the cell’s RNA sequences through a
sequencing experiment. We refer to this problem as the transcriptome re-
construction problem, and we specifically investigate, both theoretically
and practically, the conditions under which the problem can be solved.
We demonstrate that, even under the assumption of exact information,
neither single read nor paired-end read sequences guarantee theoretically
that the reconstruction problem has a unique solution. However, by in-
vestigating the behavior of the best annotated human gene set, we also
show that, in practice, paired-end reads – but not single reads – may be
sufficient to solve the vast majority of the transcript variants species and
abundances. We finally show that, when we assume that the RNA species
existing in the cell are known, single read sequences can effectively be
used to infer transcript variant abundances.

1 Introduction

The genome sequence is said to be an organism’s blueprint, the set of instruc-
tions specifying the biological features of the organism. The first step in the
unfolding of these instructions is the transcription of the cell’s DNA into RNA,
and the subsequent processing of the primary RNA to functional RNA mole-
cules. A typical eukaryotic cell contains tens of thousands of RNA species, each
of them present in one or multiple copies. Usually, only a fraction of the DNA
is transcribed to RNA in a given cell type. On the other hand, multiple species
can be generated from the same primary transcripts through alternative splicing,
a process in which fragments of the primary RNA molecule, the exons, can be
spliced out in different combinations, often in a cell-type specific manner, to gen-
erate the mature RNA molecule. Thus, while the DNA complement of a cell is
essentially constant across time, and across cells in multicellular organisms, the
RNA complement is, in contrast, highly variable and is determinant of the spe-
cific phenotype of each cell type and condition. The determination of the RNA
complement is therefore essential for the characterization and understanding of
the biology of the cell.
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Systematic sequencing of cDNA libraries has probably been the main ap-
proach to the identification and quantification of the different RNA species in
the cell. One popular strategy is based on the identification, by a ”single pass” se-
quencing, of random cDNA clones, that results in the production of short partial
sequences identifying a specific transcript. This technology is generally known as
Expressed Sequence Tag, or EST [1,2,9,10]. Since different RNA species in the
cell, originating from alternative splicing of the same primary transcript, may
share a substantial fraction of their sequence, the partial nature of the ESTs
makes it difficult to unequivocally establish the RNA molecule specifically re-
sponsible for a given EST. In other words, identical ESTs can originate from
different alternative spliced RNA molecules. To address this issue, a number of
methods, notably based on splicing graphs [8,12,13,17], a data structure used to
describe the connectivity between adjacent exons in the alternative spliced RNAs
originating from a given primary transcript, have been employed in an attempt
to reconstruct splice variants from partial EST sequences obtained from non-
normalized libraries [19]. A second problem with this approach is due to the large
dynamic range of RNA abundances in the cell that makes sampling of the low
abundant species very inefficient. In practice, these species can only be effectively
recovered once their abundance has been selectively increased through normal-
ization procedures. These procedures, however, destroy the relative abundance of
the species in the cell, and are therefore inadequate for complete transcriptome
reconstruction. Recently, next generation sequencing technologies have dramati-
cally augmented the capacity for sequencing DNA and RNA molecules. In partic-
ular, they provide for an unprecedented capacity for deep sampling of the tran-
scriptome of the eukaryotic cell. However, the most cost-effective such technolo-
gies, such as Solexa/Illumina [3], AB SOliD (www.appliedbiosystems.com) and
HELICOS (www.helicosbio.com), among others, typically produce very short
sequence reads – from 25 to 35 bp – exacerbating enormously the problem of
reconstructing complete RNA molecules from partial sequences.

In this paper we address the problem of characterizing the RNA complement
of a given cell type, that is the set of RNA species, or transcript variants, and
their relative copy number, called their abundance, from a large set of short se-
quence reads, which have been randomly sampled from the cell’s RNA sequences
through a sequencing experiment. We refer to this problem as the transcriptome
reconstruction problem, and we specifically investigate, both theoretically and
practically, the conditions under which the problem can be solved. Through all
the paper we will assume that the number of sequence reads originating from
each mRNA species is a positive integer proportional to the number of copies of
such species in the cell, we will refer to this assumption as to the exact infor-
mation hypothesis. We will also assume that the RNA molecules are uniformly
sampled along their entire length, and that there is no 3’ or 5’ sampling bias.
While these assumptions may not be realistic at present time, we argue that
they do not affect the overall conclusions of our work. We specifically investi-
gate whether solutions to the transcriptome reconstruction problem exist when
the sequencing experiment has produced single sequence reads, and when it has
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produced paired-end reads – that is, pairs of non-adjacent sequence reads coming
from the same RNA molecule. We also investigate the particular case in which
the RNA species are assumed to be known. The reconstruction problem then
simplifies to the estimation of the abundances.

We first show that only sequence reads spanning block junctions are relevant
for transcriptome reconstruction, and that the remaining sequence reads are
superfluous. Then, we formulate the problem of transcriptome reconstruction
as a system of linear equations in which the abundance of such junction reads,
or pairs of junctions reads, which are known from the sequencing experiment,
is simply the sum of the abundances of the transcript variants in which they
occur (the unknowns). In this framework, when the linear system has a unique
solution, the transcriptome can be completely reconstructed. We demonstrate
that, even under the exact information hypothesis, neither single read nor paired-
end read sequences guarantee theoretically that the linear system has a unique
solution. However, by investigating the behavior of the best annotated human
gene set, we also show that, in practice, paired-end reads – but not single reads
– may be sufficient to solve the vast majority of the transcript variants species
and abundances. We finally show that, when we assume that the RNA species
existing in the cell are known, single read sequences can effectively be used to
infer transcript variant abundances.

In our approach, the system of linear equations is derived from the underlying
splicing graph of the transcriptome to be reconstructed, which is assumed to be
known a priori or inferred from the sequencing experiment. Inferring the splicing
graph from the sequencing experiment requires that all junctions are covered,
which is guaranteed in our case because we assume exact information. It also
requires that the reads covering a junction are identified as such. This is related
to the problem of spliced alignment of short reads on the genome, which we do
not address in this paper. This will be the focus of the next step of this project.
Available methods addressing this issue include [5].

2 The Transcriptome Reconstruction Problem

A gene can be regarded as a non-redundant set of exons, i.e., continuous segments
of the genomic sequence that are expressed in at least one of its variants. Con-
sequently, transcript variants are typically described by the respective sequence
of exons they incorporate from 5’ to 3’. Clearly, exons from different variants
of the same gene may overlap when projecting them on the genome, tokenizing
them into different exon fragments. Since, in this work, we are more generally
interested in common parts of transcripts rather than simply in common exons,
we introduce the concept of a block.

Definition 1. A block is a maximal sequence of adjacent exons or exon frag-
ments that always appear together in a set of variants.

Therefore, variants can be represented by sequences of blocks. Figure 1 illustrates
how blocks are inferred from exons. A block junction is a pair of consecutive
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A B C Ds f

A B C Ds f

Fig. 1. The left part corresponds to a diagram of a gene with three variants, where
rectangles represent exons or exon fragments that belong to a particular variant, and
horizontal lines are the intervening parts that are not contained in a particular variant
(introns). Vertical dashed lines delimit four blocks, that are labelled A, B, C, and D. A
block either completely belongs to a variant, or is skipped. The depicted variants can
thus be described by the sequences ABCD, C, and AD. The corresponding splicing
graph is drawn in the right part where vertices are blocks and edges are block junctions
pointing in the direction of transcription, from 5’ to 3’. The graph is completed by two
additional vertices s and f , for start and finish. Vertex s is connected to all first blocks
of the variants, and vertex f is connected to all last blocks.

blocks in a variant, including pairs such as sA, or Df , to denote the ’start’ and
’finish’ junctions. As shown in the example, a block may even be an exon-intron
structure (such as block C) and a block junction does not necessarily correspond
to an exon junction (such as block junction AB).

Given a set So of variants, the splicing graph is a directed acyclic graph whose
vertices are the blocks, and whose directed edges join two blocks if the corre-
sponding junction exists in at least one of the variants in the set So [8]. Ad-
ditionally, two vertices labelled s and f are included that respectively connect
to the first and from the last block of each transcript as in [15]. These splicing
graphs play a crucial role in analyzing alternative splicing [16,17].

A variant, in this splicing graph, corresponds to a directed path that goes from
vertex s to vertex f reproducing the sequence of blocks it contains. However,
paths from vertex s to vertex f do not necessarily correspond to expressed
variants. For instance, in the graph of Fig. 1, the set of annotated transcripts
is So = {ABCD,C,AD} but the set of paths also includes ABC and CD. In
general, if there are N blocks, there is a theoretical possibility of 2N −1 different
paths in a splicing graph.

We now formulate the transcriptome reconstruction problem as follows: Given a
set S = {x1, . . . , xk} of candidate variants, and a set of constraints {C1, . . . , Cm},
each indicating the total abundance of a subset of variants of S, is it possible
to assign a unique abundance to each variant such that all the constraints are
satisfied?

In practice, a constraint Cj , will reflect, for example, the number of sequence
reads mapping to a particular block junction j, called the abundance of the block
junction, and the corresponding subset of variants will be all variants of S that
contain junction j.
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In Section 4, we will investigate a particular case of this problem in which the
set S of candidate variants is the set of all possible paths of a given splicing graph,
and the constraints are the abundances of block junctions. Section 5 discusses
the case when only a known subset of all possible paths are candidate variants,
and, in Section 6, we will consider the general problem when the constraints are
the abundances of pairs of block junctions.

3 Preliminaries

In the following, we will assume that the information given by the constraints is
exact, in the sense that the measure of total abundance of a subset of variants
is an integer that faithfully reflects the corresponding number of molecules.

We are aware that this assumption is not realistic at present time. However, we
argue that the results obtained under this assumption give a good indication of
the results we should expect when we deal with partial information. In particular,
when we show that a variant cannot be solved with exact information, it will
obviously also be the case with partial information. Furthermore, given the pace
at which new sequencing technologies are developing, it seems reasonable to
predict that a typical transcriptome of size 6.108 nucleotides could be affordably
sequenced to great depth. As an indication, a single Solexa experiment performed
today (one flow cell) would produce a 2X coverage.

Given the technologies currently at hand, we consider constraints of two types:
measures of the total abundance of block junctions, such as those obtained from
single sequence reads, and measures of the total abundance of pairs of junctions,
such as that obtained from paired end sequence reads. We refer to the first type
as ’local information’, and to the second as ’paired information’. In both cases
it is always possible to recover the abundance of blocks from the abundance of
block junctions, under the exact information hypothesis. To see this, denote by
CY the total abundance of variants containing block Y , and by CXY the total
abundance of variants containing junction XY , then we have, for each block Y :

CY =
∑

X∈[s..Y [

CXY =
∑

Z∈]Y..f ]

CY Z .

Similarly, it is possible to recover the abundance of a block junction using the
data on the abundance of pairs of junctions. Let CTU,XY be the total abundance
of variants containing both block junctions TU and XY , then, for each junction
XY :

CXY =
∑

T∈[s..X[

CTX,XY =
∑

U∈]Y..f ]

CXY,Y U .

To illustrate the main techniques and pitfalls of the reconstruction problem,
consider the following example. We will consider the splicing graph of Fig. 1,
but without the knowledge of which variants are expressed because we are now
trying to predict them. Let S = {ABCD,ABC,AD,C,CD} be the set of paths
of the splicing graph, and let CXY be the abundance of a block junction XY for
each edge of the splicing graph.
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The transcriptome reconstruction problem can be formulated using the fol-
lowing system of linear equations, where the abundance of a variant is denoted
by the label of the variant:

ABCD +ABC +AD = CsA (1)
C + CD = CsC (2)

ABCD +ABC = CAB (3)
AD = CAD (4)

ABCD +ABC = CBC (5)
ABCD + CD = CCD (6)

ABC + C = CCf (7)
ABCD +AD + CD = CDf (8)

The problem can be solved if the system has a unique solution. Unfortunately,
many equations are linearly dependent, namely (3) = (5), (1) = (3) + (4), (2)
+ (5) = (6) + (7), and (8) = (4) + (6). These identities correspond to integrity
constraints that impose that the sum of the abundances of edges that goes in
a vertex V is equal to the sum of abundances on edges that go out of V . This
reduces the number of equations to the following four:

C + CD = CsC

AD = CAD

ABCD +ABC = CAB

ABC + C = CCf

If each variant of the original set So = {ABCD,C,AD} used to construct
the splicing graph in Fig. 1 is expressed, then the values of CsC , CAD, CAB, and
CCf are all positive. The abundance of only one of the variants, namely AD,
can be correctly predicted, and the values of the four others are linked by only
three equations and are thus impossible to determine. In this example, with
the posterior knowledge of the original variants, we would conclude that we can
correctly predict the abundance of 1/3 of the variants, which is quite a poor
performance!

The unsolvable instances of the preceding example result from the fact that
in the two sets of variants {ABCD,C} and {ABC,CD}, each block junction,
and therefore each block, has the same number of occurrences: in this case sA,
AB, BC, CD, sC, Cf and Df appear all exactly once in both sets of variants.
Any method that measures only abundance of blocks, or block junctions, will be
blind to the substitution of members of one set by members of the other. This
leads to the following definition:

Definition 2. Two disjoint sets of variants S1 and S2 are interchangeable under
block junctions if each block junction has the same number of occurrences in each
set. Similarly two disjoint sets of variants S1 and S2 are interchangeable under
pairs of block junctions if each pair of block junctions has the same number of
occurrences in each set.

The smallest example of two sets interchangeable under block junctions is given
by the sets {ABC,B} and {AB,BC}, and the smallest example of interchange-
ability under pairs of block junctions is:

{ABCDE,ABD,BCD,BDE} and {ABCD,ABDE,BCDE,BD}.
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In order to find this set, we explicitly solved the systems of linear equations with
the 2N − 1 possible variants for N = 2, 3, 4 and 5 blocks. In the first three cases,
there was a unique solution for all variants. In the last case, we could predict the
abundance of 23 of the 31 possible variants, and found these two interchangeable
sets.

If enough variants belonging to interchangeable sets are expressed in a cell,
then it is impossible to determine the abundance of any of the variants of the
sets. Formally, we have:

Proposition 1. If the set of candidate variants contains interchangeable sets
S1 and S2, and all the variants of at least one of the two sets S1 or S2 have a
strictly positive abundance, then it is impossible to predict the abundance of any
variant in S1 ∪ S2.

Proof. Suppose that S1 and S2 are interchangeable under block junction – the
proof is similar for interchangeability under pairs of block junctions. Suppose
that all variants in S1 have a positive abundance of at least a, and let CXY

be the total abundance of variants containing junction XY . If junction XY is
present in k variants of S1, it is thus present in k variants of S2, then CXY can
be written as

CXY = A+ x1 + . . .+ xk + y1 + . . . yk

= A+ (x1 − a) + . . .+ (xk − a) + (y1 + a) + . . . (yk + a)

where A is the total abundance of variants that have the junction XY but do
not belong to S1 ∪ S2, and x1, . . . , xk and y1, . . . , yk represents the abundances
of variants in S1 and S2 that contain junction XY . Since the above equation
is true for any constraint, subtracting the value a to all abundances of variants
in S1, and adding a to all abundances of variants in S2 yields a solution that
satisfies all the constraints.

In the work of Xing et al. [20], variants belonging to interchangeable sets are
treated as equiprobable. This means that the experimental evidence is equally
distributed among all variants of the interchangeable sets, yielding ungrounded
predictions. Although, in the case of ESTs, the consequences may be less dra-
matic than with short reads, since interchangeable sets can be identified before-
hand, it would be preferable to remove the corresponding variants from the list
of candidate variants.

4 Transcriptome Reconstruction with Local Information

Local information is the type of data that one can obtain with short read se-
quencing but also with splicing microarrays. In the case of short reads, it is
theoretically possible to reconstruct the actual splicing graph from experimental
data, but, in the case of microarray detection, where only a certain number of
block junctions are tested, the splicing graph can be incomplete. In this section,
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we will assume that the splicing graph is given, together with the abundance of
each block junction.

The reconstruction problem with local information is the following: Given a
splicing graph G and the abundance of each block junction, if S is the set of
all possible paths in G, when is it possible to assign a unique abundance to a
variant in S?

Proposition 2. Given the abundances of block junctions, if S is the set of all
possible paths in a splicing graph, the abundance of a variant x ∈ S can be
predicted if and only if x has a unique block junction among all elements of S.

Proof. If x has a unique block junction, then its abundance is immediately given.
On the other hand, if a path x shares all its junctions with other paths, then
there exists a path y that shares a longest prefix with x, meaning that there exists
a, x′, y′ sequences of blocks, and B �= C such that x = aABx′, and y = aACy′.
The path x shares its junction AB with a word z that does not begin with aA,
since y was a longest such prefix. Thus z is of the form bABz′, with a �= b, see
Figure 2. This implies that the four words aABx′, aACy′, bABx′ and bACy′

are all paths in the splicing graph, but {aABx′, bACy′} and {aACy′, bABx′}
are interchangeable under block junction, thus the abundance of x cannot be
predicted.

A
B x’a

b C

z’
y’

Fig. 2. The existence of three paths x = aABx′, y = aACy′ and z = bABz′, with a �= b
and B �= C, implies the existence of a fourth path bACy′. Note that the sequences x′,
y′ and z′ can be empty.

In order to evaluate the impact of this result in practice, we have quantified,
in a set of exhaustively annotated human genes, the proportion of candidate
variants among all paths in the splicing graph that have unique block junctions,
and that therefore can be recovered using local information alone. We focused on
the GENCODE dataset [7], a high quality data annotation of the protein coding
genes in the regions covering the 1% of the human genome selected within the
ENCODE project [6]. The GENCODE annotation was obtained through manual
curation of cDNA and EST alignments onto the human genome, augmented with
computational predictions that were subsequently experimentally tested by RT-
PCR and RACE. The current version of GENCODE contains 681 genes and
2981 variants. We focused on the 335 genes that are annotated with at least 2
variants, corresponding to a total of 2635 variants. The first three lines of Table 1
present the distribution of the number of variants per gene.
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Table 1. Lines A, B and C give statistics on the the 335 GENCODE genes annotated
with at least two variants, grouped by their number of variants. Line D gives the number
of these variants whose abundance could have been predicted using local information
(Section 4). Line E gives the number of these variants whose abundance could have
been predicted using local information, and prior knowledge of the variants (Section 5).
Line F gives the number of these variants whose abundance could have been predicted
using paired information (Section 6).

A Number of genes 55 47 35 25 24 19 18 19 11 14 14 10 5 39

B Number of variants per gene 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥ 15

C Total number of variants 110 141 141 124 144 133 144 171 110 154 168 130 70 895

D Solved with local information 8 7 4 1 0 0 2 2 0 0 1 1 0 4

E Solved with fixed list 110 141 141 124 144 133 144 171 110 154 168 130 70 891

F Solved with paired information 110 141 141 124 144 133 144 171 110 154 168 130 70 895

For each GENCODE gene, we constructed the splicing graph, and computed
how many candidate variants had unique junctions among the set of all possible
paths in the splicing graph. Note that in this section we are not assuming any
knowledge of the existing variants. The splice graph could in principle be inferred
from the RNA sequencing experiment. The computation in this experiment is
quite straightforward. However, even if most splicing graphs are of modest di-
mension, the worst case in the dataset was a gene with 72 transcripts yielding
191 blocks, 352 block junctions, and 36.6 million paths. Results appear in line
D of Table 1.

Only 30 out of 2,635 GENCODE variants (1.14%) have unique block junctions
and these are then the only ones that can actually be solved. That is, even in
the case of exact information, RNA sequencing by short single reads will only
help to unequivocally quantify the abundances of a handful of variants. This
was expected, since interchangeable sets with respect to block junctions exists
even with only 3 blocks, and their number grows rapidly with the number of
blocks. The only way to improve the performance is to reduce the number of
candidate variants to consider. This can be done either by explicitly assuming
that all potential variants are already known, and the problem reduces to the
estimation of their abundances, which we will explore in the next section, or by
using additional information on the variants that may actually exist, which we
will discuss in Section 6.

5 Transcriptome Reconstruction with Local Information
and a Fixed Set of Candidates

In this section, we investigate the problem of measuring the abundance of tran-
script variants with local information when the candidates are not necessarily all
the paths of a splicing graph, but are given as a fixed list. This is an interesting
alternative problem since we may consider that, in the coming years, all existing
variants should be known, at least for extensively studied organisms.
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In this case, it is sufficient to solve the corresponding set of equations. The
solution is not unique when there are interchangeable sets in the given list of
candidates, and they can then be identified from the set of variants that admit
multiple solutions. Algorithms to do this are adapted from well-known algorithms
in linear algebra. Consider the example of Section 3, and suppose that the set
of candidates is S = {ABCD,C,AD,ABC}, then the corresponding – reduced
– set of equations is:

C = CsC

AD = CAD

ABCD +ABC = CAB

ABC + C = CCf

This system, with four unknowns and four independent equations has a unique
solution.

Working again with the GENCODE dataset, we computed how many vari-
ants would have their abundance correctly predicted. In this experiment the list
of candidates is the list of annotated GENCODE variants. Line E of Table 1
gives the number of correctly predicted variants. Overall, the total number of
correctly predicted variants is 2631 out of 2635, which represents 99.84 % of the
GENCODE variants. Clearly, the prior knowledge of possible variants makes a
huge difference. These results show that technologies such as short read sequenc-
ing or microarrays, that use only local information, should eventually be able to
reconstruct transcriptomes, even if they are not able to predict new variants. In
this experiment, only one gene, ITSN1, was problematic. Out of the 21 known
variants of this gene, 17 can be resolved. The four remaining variants can be
split into two interchangeable sets, and predicting their relative abundance must
rely on other sources of information.

6 Transcriptome Reconstruction with Paired Information

In Section 3 we saw that, even with exact information on pairs of block junctions,
interchangeable sets could be a problem. However, the combinatorial complex-
ity of the smallest interchangeable sets is a good indication that most of real
examples should be solvable.

With the current technology, paired information can only be obtained through
sequencing. In the process, molecules are randomly sheared and the two extrem-
ities of molecule fragments are sequenced. For de novo sequencing, the distance
between the two sequenced fragments, called the insert length, must be con-
trolled. This is achieved by migrating the fragments on a gel and selecting for
specific sizes. In the case of transcriptome reconstruction, knowing the insert
length is not necessary and this selection step can be skipped. This allows, in
theory, a uniform distribution of insert lengths within an RNA molecule. Such
paired reads may link two blocks of a variant, a block and a block junction, or
two block junctions. With the exact information hypothesis, we only need to
consider paired reads that link two block junctions, which are said to co-occur
in a variant.
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Given a splicing graph and observed pairs of block junctions, we first identify
all paths in the graph that contain only observed pairs. This is done by Algo-
rithm 1. The output of this algorithm is a list S of candidates. We then solve
the corresponding system of equations, and report the number of variants whose
abundance is uniquely determined. As shown in line F of Table 1, with paired
information, we could have predicted the abundance of every single GENCODE
variant.

Algorithm 1. Enumeration of candidates with observed pairs of block junctions.
For each block b, the set of junctions whose source is b is denoted Incident(b);
for each junction j, the set of junctions that may co-occur with j is denoted
by Co occur(j), and End(j) denotes the second block of a block junction. The
procedure is initially called with the parameter ’candidate’ equal to the empty
string, the parameter ’block’ as s, and the parameter ’allowedJunctions’ as the
set of all the edges of the splice graph.

SplicingGraphTraversal(candidate, block, allowedJunctions)
if block = f then

Output candidate {Successful traversal}
else

nextJunctions ← allowedJunctions ∩ Incident(block)
if nextJunctions �= ∅ then

for each junction ∈ nextJunctions do
allowed ← allowedJunctions ∩ Co occur(junction)
SplicingGraphTraversal(Concat(candidate, block), End(junction), allowed)

end for
end if

end if

The fact that all GENCODE variants can be solved with paired information is
very promising, since it means that with this kind of information, and assuming
that the GENCODE annotations are representative, variant discovery will be
possible using paired-end short read sequencing.

To assess to what extent the results on the GENCODE set, which cover 1% of
the human genome, can be extrapolated to the entire genome, we have extended
our analysis to the REFSEQ genome-wide gene and transcript reference set [14].
Results are shown in Table 2. Unlike the GENCODE dataset, genes in RefSeq are

Table 2. Number of Refseq variants whose abundance could have been predicted using
paired information

Number of genes 2914 856 349 139 75 44 22 13 5 2 3 3 1 11

Number of variants per gene 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥ 15

Total number of variants 5828 2568 1396 695 450 308 176 117 50 22 36 39 14 239

Solved with paired information 5828 2568 1396 695 450 308 169 117 50 22 36 32 6 224
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not extensively annotated for transcript variants. Most genes are annotated for 2
or 3 variants. Of the 11938 variants present in this dataset, we could solve 11901,
(99.7%). Overall, we found 5 genes out of 4437 containing interchangeable sets of
putative variants. This means that, even with paired information, these variants
cannot be solved unless some of them are ruled out by additional experimental
evidence. In 4 cases, the interchangeable sets contained four elements, and, in
one case, six elements. These genes are: DMD, ENSA, CTNND1, CD46, NR1I3.

As an example, gene ENSA has eight annotated variants in Refseq: EFH,
ACDFH,ACDFG,BCDFH,ACFG,ACFH,BCFG,BCFH. Of these 8 vari-
ants, one can be solved, EFH , but the last four form a subset interchangeable
with {ACDFG,ACDFH,BCDFG,BCDFH}.

7 Discussion and Conclusions

In this study, we worked under the exact information hypothesis. This means
that we assume that a sequencing experiment can give us all the abundances of
block junctions.

We are aware that this assumption is not realistic at present time since, in
practice, coverage will be limited, and we would therefore have to deal with par-
tial information on the abundances of blocks and block junctions. In particular,
variants which are present in low abundances may not be covered at all. How-
ever, this study still enables to explore the limits of various approaches. Indeed,
if prediction is impossible with exact information, it cannot become possible
with partial information.

The techniques developed in this paper can therefore be used to identify sets
of existing variants whose relative abundance cannot be measured with local
information, or with paired information. This is the case of gene ITSN1, for local
information with fixed set of candidates, and of genes DMD, ENSA, CTNND1,
CD46, NR1I3, for paired information. This information could for example be
used to modulate the output of algorithms such as those in [20].

Another aspect of the transcriptome reconstruction problem which is high-
lighted in this study is the fact that information is generally highly redundant,
i.e. many constraints concern the same set of variants. This can be seen either as
an advantage, since missing information is almost unavoidable, or as a complica-
tion, in the case of inconsistent measures. However, these issues can be addressed
with probabilistic or linear programming techniques, once the interchangeable
sets are removed from the set of candidates.

In this paper, we assumed that, during a sequencing experiment, the RNA
molecules were uniformly sampled along their entire length, and that there was
no 3’ or 5’ sampling bias. On the other hand, it has been reported in the sup-
plementary material of [18] that this is not the case, at least for 454 platforms
and preliminary experiments indicate that this bias is also observed for other
platforms. We think that this additional knowledge, if taken into account in the
reconstruction problem, may be useful and allow to sort out cases which we have
considered unsolvable.
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In the case of paired information, we deliberately ignored all data – or absence
of data – on pairs of blocks or pairs of block and block junctions. In a real
experiment, a pair of block junctions might well be missed, and its absence from
the data is not a very strong indication of its absence in reality. On the other
hand, the absence from the data of a pair of blocks is a stronger signal and can
be used to rule out many paths in a splicing graph. In this sense, Algorithm 1
is a canvas that can be extended to incorporate all available information.
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Abstract. High-throughput microarray experiments produce vast
amounts of data. Quality control methods for every step of such ex-
periments are essential to ensure a high biological significance of the
conclusions drawn from the data. This issue has been addressed for most
steps of the typical microarray pipeline, but the quality of the oligonu-
cleotide probes designed for microarrays has only been evaluated based
on their a priori properties, such as sequence length or melting tem-
perature predictions. We introduce new oligo quality measures that can
be calculated using expression values collected in direct as well as indi-
rect design experiments. Based on these measures, we propose combined
oligo quality scores as a tool for assessing probe quality, optimizing array
designs and data normalization strategies. We use simulated as well as
biological data sets to evaluate these new quality scores. We show that
the presented quality scores reliably identify high-quality probes. The
set of best-quality probes converges with increasing number of arrays
used for the calculation and the measures are robust with respect to the
chosen normalization method.

1 Introduction

The adoption of high-throughput microarray experiments as a standard method
for gene expression analyses, and, more recently, for studies of chromatin modi-
fications in ChIP-Chip experiments highlights the importance of quality control
methods for these kinds of experiments. Methods for quality control of samples
before and after hybridization as well as of hybridised arrays as a whole have
been proposed [1,2, 3]. Also, pre-production quality of oligonucleotide probes is
extensively optimized [4, 5].

Factors considered for optimization of oligonucleotide probes are sequence
length, complexity, melting temperature, GC content, and low probability for
crosshybridization and formation of secondary structures. These factors are eval-
uated in silico by the algorithms used for probe design. Where an optimal so-
lution cannot be found, heuristics are used to find a sufficiently “good” set of
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probes [6]. On the other hand, these factors can be used to evaluate the quality
of any given probe set.

Yet there is one problem inherent in any pre-production quality measure: It is
derived entirely from data available before any experiment with those probes has
been performed and thus can not incorporate knowledge gained during experi-
mentation. A method to assess the quality of oligonucleotides a posteriori, that
is after hybridization, has been missing so far. We present several oligo quality
measures that can be calculated from measured expression values collected from
indirect design experiments with a common reference sample in one channel or
from absolute design experiments with a uniform sample.

A high-quality oligo probe produces reliable expression data. It fulfills three
necessary requirements for this type of high-throughput experiment: Sensitiv-
ity, specificity and comparability. A sensitive oligo shows a signal if the target
molecule is in the sample. A specific oligo only represents its target and no other
target, i.e. will not show any cross hybridization. It will also produce signals that
are directly related to the amount of target molecules in the sample. The aim of
many microarray experiments is to compare the signal intensities produced by
different spots. Good oligos should therefore report signals of the same strength
if the hybridised sample contains the same amounts of their respective target
molecules.

These three requirements are also the basis for the quality measures we present
in this work. We define several measures that individually can be used to assess
the sensitivity, specificity and comparability of an oligo, or in a combined score to
subsequently rank all oligos of an array. The performance of the new oligo quality
measures is evaluated with a simulated data set. Furthermore we show that
application of these measures to normalized data from a large ChIP-Chip study
using oligo microarrays interrogating 10,000 human promoter regions produces
robust results for differing normalization strategies or when only a subset of all
arrays is considered.

2 Methods

Microarray data is usually represented as a two-dimensional matrix of expression
values where each row represents one spot on the array (usually one genomic
target) and each column represents one experiment, i.e. one hybridized array. For
background and details on microarray analyses see e.g. [7]. For a fixed microarray
design let nO be the number of oligos (matrix rows) and nA be the number of
experiments (matrix columns). We use sij to represent the value of the ith row
(target) in the jth column (experiment), where 1 ≤ i ≤ nO and 1 ≤ j ≤ nA.
Furthermore, si∗ denotes the whole ith row of the expression matrix, i.e. a vector
of signal values for spot i on all arrays, while s∗∗ designates the whole matrix s.
Finally, we use r∗∗ for a matrix obtained from the expression matrix by randomly
permuting cells, i.e. rij = ski�j where k and � are random permutations of 1 . . . nO

and 1 . . . nA respectively. Finally, oi is defined as the oligo placed on the ith spot,
i.e. the probe used to obtain the values of the ith matrix row.
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2.1 The Flag Measure

During spot quantification, the imaging software usually assigns flags when spots
are missing or when spots have a deviating morphology. If the hybridised sample
contained the target for the flagged spot, such a flag indicates a failed hybridiza-
tion. By counting the number of times a spot is flagged in the set of all arrays, a
simple measure can be obtained of how often hybridization fails using this oligo.
However, sometimes a large number of spots are flagged on an array, indicat-
ing that the microarray experiment itself failed for example due to problematic
buffer conditions, problems during sample preparation or even scanning.

Taking these considerations into account, the oligo flag measure, ofm, is de-
fined as

ofm(oi) =
nA∑

k=1

fikwk

with

wj =
ŵj∑nA

k=1 wk
, ŵj = 1 −

(
1
nO

nO∑

�=1

f�j

)

and

fij =

{
1 if there is a flag for spot i on array j
0 else

The weights wj are chosen such that the badness of a flag is a linear function of
the number of flags on the array and normalized such that their sum is one. The
flag measure takes values between 0 (no flags) and 1 (maximal number of flags).

2.2 Oligo Stability Measures

Assessing the reliability of the signal produced by an oligo requires knowledge
about the abundance of target DNA. ChIP-Chip experiment data can be used
here, since ChIP-Chip experiments usually employ a so-called indirect design.
This means that different conditions or treatments are not compared directly to
one another but rather indirectly by way of an intermediate, i.e. the genomic
DNA in the second channel that is the same in all array hybridizations of the
experiment.

Since all arrays contain the same genomic DNA in the reference channel, the
signals in that channel can be expected to be identical between two arrays after
the data has been normalized, assuming that the normalization method was
chosen correctly. The following measures were designed on the assumption of
identical reference channel data in all arrays of the experiment.

Oligo Stability. We use the coefficient of variation (CV), defined as the stan-
dard deviation divided by the mean of a vector, to measure the deviation of a
probe from its mean across all hybridizations independent of its absolute value.

The oligo stability measure, osm, for an oligo probe oi is defined as follows:

osm(oi) = − log2

CV (si∗)
median (CV (r1∗), . . . , CV (rnO∗))
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Oligo Rank Stability. A variant of the oligo stability measure uses the rank
function. The vector of signal values is converted into a vector of ranks, with the
smallest value being assigned to rank one.

The oligo rank stability measure uses the same basic idea as the oligo stability
measure, by defining an oligo to be stable if its value has the same rank for each
array. To quantify the (in)stability, the standard deviation of the vector of rank
values is used. While the oligo stability measure uses the coefficient of variation
to be independent of absolute signal strength, the oligo rank stability measure
does not require such normalization. We use the geometric mean, gmean(v),

of a vector v, defined as gmean(v) = |v|
√∏|v|

j=1 vj , the standard deviation is
computed on the geometric mean. Then the oligo rank stability, ors, is defined
as

ors(oi) = − log2

gsd(s̃i∗)
median (gsd(r̃1∗), . . . , gsd(r̃nO∗))

with

gsd(v) =
1
|v|

|v|∑

i=1

(vi − gmean(v))

where s̃ij is the rank of sij and r̃ is the randomized version of s̃.

Group Stability Measures. Both measures introduced in the previous section
assume that, ideally, reference channel data should be identical on all arrays,
reflecting the fact that the sample creating the reference signal is identical. If
a spot shows different signal values for one or several arrays, the oligo stability
measures as defined above assign lower values to the corresponding oligo.

There is, however, the possibility that the difference in signal values reflects
a real difference in the abundance of the respective target DNA in the reference
sample. One possible reason would be the use of independent reference sample
preparations for individual arrays.

Furthermore, the abundance of DNA representing a certain genomic location
could be different between two genomic reference samples. In that case one would
expect that oligos from adjacent genomic regions show the same changes. Thus,
if the signal produced for one genomic location changes between two arrays but
at the same time, genomically adjacent probes produce similar signals, it is more
likely that the changed signals reflect a real change in target abundance.

The group stability measure scores every oligo according to how similar its
signal values are to those of oligos in the same group, where group is defined
by genomic adjacency, for example representing a promoter region. Let G(oi) ⊂
[1, nO] be the set of oligos belonging to the same group as oligo oi and let R(oi)
be a random set of the same size containing oligos unrelated to oi. Then the
group stability measure, ogs, is defined as

ogs(oi) = mean
(
f̂(si1), . . . , f̂(sinA)

)
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with

f̂(sij) = − log2

f(sij , G)
median (f(s1j , R), . . . , f(snOj , R))

and
f(sij , G) = min

i�=k∈G(i)
|sij − skj |

The definition of the function f is the crucial part. It specifies how the similarity
between the oligo and its group neighbors is computed. Although the minimum
distance that we use is computationally more expensive than using the distance
to the group mean or median, it is superior to both. Consider a group of three
oligos where two have identical values and the third one differs strongly. The
intended behaviour of the oligo group stability measure would be to give the
best score to the two identical oligos and to give a bad score to the outlier.

The mean is very susceptible to outliers, thus the scores of the two good oligos
would depend on how bad the outlier is. The distance to the group median, on
the other hand, would always result in a score of zero for one of the three oligos.
This means that one oligo would get an extremely good score just because its
value lies between those of its group neighbors. If the oligos’ values are very
similar, experimental noise would decide which one gets the zero score.

Normalization Measure. After normalization of all arrays, it is expected that
the signal of a probe in the reference channel is the same for all arrays in the
experiment, i.e. sij = sik∀k ∈ {1, . . . , nA}.

Based on this assumption, the oligo normalization measure, onm, computes the
mean of all pairwise comparisons between the spots’ signal strength on all arrays:

onm(oi) = meank<�

∣
∣
∣∣log2

sik

si�

∣
∣
∣∣

2.3 Majority Measure

Ideally, all probes should produce signals of identical strength if the abundance
of their respective targets is the same. Every experiment that aims at comparing
the expression of two different genes relies on this relationship. A simple measure
could be derived from the distance of the probe’s signal strength to the median
or mean of all probe signals on an array.

The oligo majority measure of an oligo is defined as the percentage of oligos
whose signal is the same (allowing for small differences because of experimental
noise and for computational considerations). Using the percentage of similar
oligos gives better results if the underlying distribution of signal strengths is bi-
or multimodal, for instance due to copy number variation [8].

The ideal definition of the majority measure would be based on the percentage
of spots skj with |skj − sij | ≤ δ. This is very expensive to compute. A less time-
consuming method is to first sort the spot signal values into bins of size 2δ and
then to take the percentage of oligos falling into the same bin. This reduces the
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measure’s accuracy by a small but acceptable amount. Using binning, the oligo
majority measure is defined as:

omm(oi) = median (f(si1), . . . , f(sinA))

with f(sij) = |{k : b(skj) = b(sij)}| and b(sij) = round
(

ŝij

δ

)
.

2.4 Combined Score

Six oligo quality measures were presented so far. Applying all of them to a
data set creates six quality values for each oligo, which could be difficult to
interpret. To draw useful conclusions from quality measures, their values have to
be combined into a single, descriptive quality value for each oligo. The selection
of measures and of the method to combine them has to be made based on a
model of what constitutes a “good” oligo.

The oligo stability, rank stability and group stability measures are log-odds
values, the normalization measure is an absolute measure derived from signal
intensities and the majority measure is a percentage. We propose using ranks
to combine these different kinds of values into one quality score. The combined
quality score, oq, is computed as follows: Calculate the flag measure ofm(oi) and
select a threshold value (e.g. 0.5). For all oi with ofm(oi) ≤ threshold, compute
the oligo quality, oq(oi) on m measures f1, . . . , fm as

oq(oi) =
1

∑m
k=1 wk

m∑

�=1

w� · rank (f�(oi))

where wi is the weight associated with measure fi. The result is an average rank
value in the interval [1, nO].

Finally, we propose one further quality score, coined the bestk measure. It
takes values in the range [0, 100] which can be interpreted more easily. The idea
behind this measure is that while the very best oligos are those that have high
values in all quality measures, oligos that score badly in only one measure can still
be among the best. The value returned by the bestk measure is the percentile of
good values that the oligo falls into according to its k (of m = k+1) best quality
measure values. To clarify, consider an oligo that is among the best 4, 5, 6, 9 and
22% according to five quality measures, respectively. The best4 value would be
the fourth best percentile, i.e. 9.

Using the quality measures f1, . . . , fm, and a function pj(oi) that computes
the percentile of f(oi) with respect to all values in {f(oj) : j = 1 . . . nO}, bestk
is calculated as

bestk(oi) = max {pj(oi) : pj(oi) �= argmax(p1(oi), . . . , pm(oi))} .

3 Results

3.1 Simulated Data Sets

We created simulated microarray signal data according to the following model:
Each simulated gene is represented by three spots on the array, forming a
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group. Our simulated experiment contains 10,000 genes with 30,000 oligos in
total. 100 hybridizations were simulated. We define a base signal level for each
gene/group by drawing the log expression value according to a gamma distrib-
ution Γ (k = 30, θ = 3). The set of genes was split into two subsets (“good” vs.
“bad” groups) of equal size. Using the base signal levels, an expression profile
was created for each gene. The values for the 100 hybridizations were taken from
a normal distribution with μ set to the base signal level and σ set to 0.01μ or
0.20μ for good and bad groups, respectively.

Now the set of all genes was split into four subsets of equal size. In the first
group, all oligos report the true expression value of the gene (plus some noise).
In the second group, one oligo may be further from the true value, in the third
group two oligos are allowed to be wrong and in the fourth group, no oligo
is accurate. From the gene expression values for each array, the values of the
individual oligos are created by adding values drawn from a normal distribution
(with μ = 0) to the respective gene expression profile. The standard deviations
σ are determined in the same way as described above, i.e. using a factor of 0.01
for the accurate oligos and 0.20 for the inaccurate ones.

Our simulated data set thus contains values for 30000 oligos on 100 arrays.
Half of the oligos are accurate, half are inaccurate. Half of them come from a
“good” gene, half do not. A quarter of them each come from a group with zero,
one, two or three accurate oligos. We assigned each oligo to one of three classes:
Accurate oligos from good groups form the “good” class, accurate oligos from
bad groups and inaccurate oligos from good groups belong to the “intermediate”
class and the inaccurate oligos from bad groups are the “bad” class.

We computed all oligo quality measures on this simulated data set except
for the flag measure, as flags were not simulated. From these five measures,
the combined oligo scores, oq and bestk, were computed for each oligo as well
as the rank according to oq. We expected the ranks of “good” oligos to be in
the first quartile (x ≤ 7500), those of “bad” oligos to be in the fourth quartile
(22500 < x) and those of “intermediate” oligos to occupy the interquartile range
(7500 < x ≤ 22500).

Figure 1 shows how nicely the combined quality score oq reflects the simulated
quality of the oligos. More than 98% of the “good” oligos’ ranks are in the first
quartile. Furthermore, the first quartile contains no “bad” oligos and only 3.0%
“intermediate” oligos. The same tendency was observed for ranks derived from
the bestk score (data not shown).

3.2 Biological Data Set

We tested our oligo quality measures on a novel data set generated on spotted
arrays of a custom design. The arrays contain 31200 spots, of which 29367 inter-
rogate the promoter regions of human genes known or suspected to be linked to
cancer. Most (9345) promoter regions are covered by three probes. The data set
was derived from 126 specimens (patients and controls) with different forms of
acute myeloid leukemia and healthy hematopoietic progenitor cells. Chromatin-
IP was performed using an antibody against acetylated Histone H3. Subsequent
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Fig. 1. Separation of simulated oligos – The boxplot shows the distribution of
the oligos’ ranks according to the combined quality measure (oq) for the three oligo
classes. The percentage values represent the number of ranks falling into the expected
range.

to the chromatin-IP, DNA was amplified using whole genome amplification be-
fore being labeled with Cy3. In addition, input DNA derived from a pool of
DNA donors was simultaneously amplified and labeled with Cy5 before being
hybridized as common reference.

Arrays were scanned using an AXON 4100B (Molecular Devices) scanner.
Spots were identified and measured using the Spotreader (Niles Scientific) soft-
ware. The raw data was normalized using functions provided by the limma [9]
package for R [10]: The “normexp” method was used for background correc-
tion. Within-array and between-array normalization were performed using the
“printtiploess” and “rquantile” methods, respectively. An additional normaliza-
tion step was introduced between these two to remove a dependency of the probe
signal on its column within the print tip: The probe signals were adjusted so that
the median signal of each column was the same.

The flag measure was computed and a threshold of 0.5 applied for filtering,
removing 4035 spots (12.9%). The reference channel data of the remaining spots
was used to compute the other quality measures which were then combined into
the quality scores, oq and best4, giving the majority measure twice the weight
of the other measures.

3.3 Robustness of the Quality Score

We evaluated the robustness of our quality scores with respect to the number of
available arrays. Furthermore, we evaluated the effect of using different normal-
ization methods prior to the quality score calculation.

To assess the score’s robustness, we use the disagreement between the sets of
top-100 spots, defined as follows. Consider two vectors of quality scores, data
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Fig. 2. Number of arrays vs. disagreement – The quality measures were com-
puted on randomly chosen subsets with increasing size of all arrays. The disagreement
between the quality score computed on the random subset and that computed on the
full reference set of 126 arrays is plotted on the y-axis.

and ref, each assigning a quality score to every spot on our array. Let data top
be the set of the 100 best probes according to data. Their average rank is 50.5.
We compute the difference of this expected rank to the observed average rank
of data top according to the quality scores in ref. The disagreement value is
normalized by the number n of oligos used (e.g. 100).

disagreementn(data, ref) =
1
n

(median(rank(ref[topXn(data)])) − (n+ 1)/2)

with topXn(data) = {i : rank(data[i]) < n}.

Thus, two perfectly matching quality score vectors would have a disagreement
score of zero, a score of one would indicate that the top 100 spots according to
one measure have an average rank of 101 in the second measure.

Figure 2 shows the disagreement when using a smaller subset of all arrays.
Obviously, the quality score converges with an increasing number of arrays. The
quality score oq performs very well even for relatively small sets of arrays, the
bestk measure converges more slowly.

The quality measures are computed on normalized reference channel signals.
To ensure that the choice of normalization method has no large influence on the
resulting quality scores, we applied different background correction and normal-
ization methods with subsequent computation of the two combined oligo scores.
We used the methods as provided by the limma package [9].

The influence of the background correction method is very small, except
for not using any background correction at all. The same holds for most of



Post-Hybridization Quality Measures for Oligos 73

no
ne

ed
w

ar
ds ha
lf

m
in

im
um

m
ov

in
gm

in

no
rm

ex
p

su
bt

ra
ct

0.0

0.1

0.2

0.3

0.4

0.5

0.6

no
ne

ed
w

ar
ds ha
lf

m
in

im
um

m
ov

in
gm

in

no
rm

ex
p

su
bt

ra
ct

0.0

0.1

0.2

0.3

0.4

0.5

0.6 best4
oq

no
ne

co
m

po
si

te

co
nt

ro
l

lo
es

s

m
ed

ia
n

M
S

C
(A

)

M
S

C
(S

)

pt
−

lo
es

s

r−
sp

lin
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

no
ne

co
m

po
si

te

co
nt

ro
l

lo
es

s

m
ed

ia
n

M
S

C
(A

)

M
S

C
(S

)

pt
−

lo
es

s

r−
sp

lin
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6 best4
oq

Fig. 3. Influence of different normalization methods on the quality measures
– 63 combinations of seven background correction and nine within-array normalization
methods were applied and the disagreement of the resulting oligo quality scores with the
scores resulting from the normexp-printtiploess pipeline computed. The disagreement
values are grouped by background correction in the left plot, and by within-array
normalization in the right plot.

the normalization methods. Only the median scaling method produces a larger
deviation.

4 Discussion

Ensuring high quality for microarray data is of great importance. Like other
high-throughput methods, microarray experiments generate large amounts of
data in parallel. These data are then first processed by the usual pipeline of
background correction, intra- and inter-array normalization.

A list of significant probes is computed and presented to the researcher. Due
to the nature of the statistical tests used to compute this list, a certain rate of
false positives is always present. On the other hand, relevant probes remain un-
detected (false negatives). In addition, the results heavily depend on the quality
of the input data. Quality control methods are one way to improve the biological
significance of experiment results.

In silico methods for probe set optimization approach the problem by en-
suring that, in theory, all probes on a microarray have very similar properties
with respect to their binding specificities. These methods incorporate thermo-
dynamic and basic chemical knowledge in combination with cross-hybridization
predictions based on sequence databases. In addition to this pre-production op-
timization, post-hybridization quality measures for hybridised arrays as a whole
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have been proposed. In vivo quality control methods for microarray data have so
far been limited to pre-hybridization tests of the labelled samples. Thus, while
the quality of hybridised samples can be checked before and after hybridization,
the quality of the probes on a microarray is only tested in a theoretical way, and
data generated by those probes is not taken into consideration.

This gap is closed by our oligo quality measures, providing a very detailed,
wide-angle view of microarray data. Using simulated data we showed that they
perform very good separation of high-quality oligos from those of lower quality.
These scores can be used in several ways.

Firstly, they allow researchers to optimize microarray designs, e.g. by replacing
questionable probes. Secondly, they can be used to annotate experimental results
with confidence values. Finally, our oligo scores can be incorporated into data
normalization pipelines to select a set of high-quality oligos as a basis for fitting
regression functions, similar to the established practice of using a set of oligos
from spike-in experiments or dilution series [11].

Combining individual quality measures merges the multi-faceted view of the
data into one oligo quality score, allowing different weights for the individual
quality measures. While this poses the problem of deciding on an appropriate
weighting scheme, it makes the quality score a very flexible tool. Furthermore,
new combined measures can be derived from the presented oligo measures so
that researchers can make use of the existing quality measures if they need to
adhere to another definition of “good” oligos.

Regardless of refined or additional measures, any definition of good oligos
should always contain two demands: Samples should reliably hybridize to the
oligo and the produced signal should be consistent and proportional to the
amount of sample. The former is covered by our flag measure, the latter by
the stability measures. Most applications will also require that any pair of good
oligos show equally strong signals if hybridised with equal amounts of sample, i.e.
their proportionality factors linking hybridization and sample abundance should
be very similar, which in this work is covered by the majority measure.

One important aspect to consider when calculating quality scores is the num-
ber of arrays used. More arrays are always better yet the minimal number of
arrays needed to produce reliable quality scores is hard to specify. If the array
data is of very high quality, a small number can be sufficient though in general
we would suggest to use at least 20 arrays. To compensate for a small number
of arrays, a more lenient threshold should be chosen when filtering oligos based
on quality scores. Selecting appropriate thresholds is not trivial. Methods for
deriving thresholds based on the characteristics of the actual data require fur-
ther research. The stability, rank stability and group stability methods already
are log-odds values and modifying the combined measures to behave likewise
would be desirable. On the other hand, permutation simulations can provide
background data for statistical evaluation of quality scores.

Our methods address the need for measuring data quality in order to draw
biologically relevant conclusions. The high importance of this issue merits further
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research into individual measures as well as overall quality scores and the choice
of quality thresholds.
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4. Gräf, S., Nielsen, F.G., Kurtz, S., Huynen, M.A., Birney, E., Stunnenberg, H.,
Flicek, P.: Optimized design and assessment of whole genome tiling arrays. Bioin-
formatics 23(13), 195–204 (2007)

5. Kreil, D.P., Russell, R.R., Russell, S.: Microarray oligonucleotide probes. Methods
Enzymol 410, 73–98 (2006)

6. Li, F., Stormo, G.D.: Selection of optimal dna oligos for gene expression arrays.
Bioinformatics 17(11), 1067–1076 (2001)
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Abstract. The Noah’s Ark Problem (NAP) is an NP-Hard optimization
problem with relevance to ecological conservation management. It asks
to maximize the phylogenetic diversity (PD) of a set of taxa given a fixed
budget, where each taxon is associated with a cost of conservation and
a probability of extinction. NAP has received renewed interest with the
rise in availability of genetic sequence data, allowing PD to be used as
a practical measure of biodiversity. However, only simplified instances of
the problem, where one or more parameters are fixed as constants, have
as of yet been addressed in the literature. We present NAPX, the first al-
gorithm for the general version of NAP that returns a 1−ε approximation

of the optimal solution. It runs in O
�

nB2h2 log2 n
log2(1−ε)

�
time where n is the

number of species, and B is the total budget and h is the height of the in-
put tree. We also provide improved bounds for its expected running time.

Keywords: Noah’s Ark Problem, phylogenetic diversity, approximation
algorithm.

1 Introduction

1.1 Motivation

Measures of biodiversity are commonly used as indicators of environmental
health. Biodiversity is presently being lost at an alarming rate, due largely to
human activity. It is speculated that this loss can lead to disastrous consequences
if left unchecked [11]. Consequently, the discipline of conservation biology has
arisen and a considerable amount of resources are being allocated to research
and implement conservation projects around the world.

A conservation strategy will necessarily depend on the measure of biodiversity
used. Traditionally, indices based on species richness and abundance have been
used to quantify the biodiversity of an ecosystem [9]. These indices are based on
counting and do not account for genetic variance. Phylogenetic diversity (PD)
[4] addresses this issue by taking into account evolutionary relationships de-
rived from DNA or protein samples. The use of PD in biological conservation
has become increasingly widespread as more phylogenetic information becomes
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available [8]. It is also used to determine diverse sequence samples in comparative
genomics [12].

The Noah’s Ark Problem (NAP) [15] is an abstraction of the fundamental
problem of many conservation projects: how best to allocate a limited amount
of resources to maximally conserve phylogenetic diversity. This is in turn a gen-
eralization of the Knapsack Problem [5] and is therefore NP-Hard. Several algo-
rithms have been proposed to solve special cases of the problem but, as yet, no
non-heuristic solutions have been proposed to solve general instances of NAP.
Given that NAP itself is an abstraction of realistic scenarios, it is important
to have a general solution in order to be able to extend this framework to use-
ful applications. For this reason, we present an algorithm that can be used to
compute an approximate solution for NAP in polynomial time, so long as the
approximation factor is held constant, and total budget is polynomial in the
input size.

1.2 Definitions

Throughout this paper, we use the following definition of a phylogenetic tree
T , with notation consistent with that of [7]. T has a root of degree 2, interior
vertices of degree 3, and n leaves, each associated with a species from set X .
If an edge e of T is incident to a leaf, it is called a pendant edge. Otherwise
e has exactly two adjacent edges, l and r, below it (not on the path from e to
the root) and these are referred to as e’s children. λ is a function that assigns a
non-negative branch length to each edge in T . The phylogenetic diversity of T ,
PD(T ) is defined as

PD(T ) =
∑

e

λ(e), (1)

where the summation is over each edge e of the tree. Intuitively, this measure
corresponds to the amount of evolutionary history represented by T .

The Noah’s Ark Problem has the objective of maximizing the expected PD,
E(PD), under the following constraints. Each taxon i ∈ X is associated with an
initial survival probability ai, which can be increased to bi at some integer cost
ci; and the total expenditure cannot exceed the budget B. Since B is a factor in
the running time, we assume that the budget and each cost have been divided
by the greatest common divisor of all the costs. In the original formulation of
NAP, each species was also associated with a utility value. However, in [7] it
was shown that these values are redundant as they can be incorporated into
the branch lengths without altering the problem. To avoid accounting for de-
generately small probability values, we make the assumption that the conserved
survival probabilities are not exponentially small in n. In other words, there ex-
ists a constant k such that bi ≥ n−k for each i ∈ X . We feel this assumption is
reasonable as it is unrealistic that money would be allocated to obtain such a
negligible probability of survival.

If a species survives, the information represented by its path to the root is
conserved. Consequently, the probability that an edge survives is equivalent to
the probability that at least one leaf below it in T survives. Let Ce be the set
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of leaves below e in the tree and S be the set of species selected for protection.
E(PD|S), can be derived from (1) as follows:

E(PD|S) =
∑

e

λ(e)

⎛

⎝1 −
∏

i∈Ce∩S

(1 − bi)
∏

j∈Ce−S

(1 − aj)

⎞

⎠ , (2)

where the summation is over all edges. NAP asks to maximize E(PD|S)
subject to ∑

s∈S

cs ≤ B.

Our algorithm is based on decomposing T into clades which are associated with
the edges of the tree. A clade corresponding to edge e, denoted Ke, is the minimal
subtree of T containing e and Ce, the set of leaves below it. The E(PD) of Ke can
be computed as in (2) but summing only over edges in the clade. The entire tree
can be considered a clade by attaching an edge of length 0 to its root. If e has two
descendant edges l and r, then we say Ke has two child clades Kl and Kr.

1.3 Related Work

Let ai
ci−→ bi NAP refer to the problem as described above, where the survival

probabilities and cost of each taxon are input variables. Fixing one or more of
these variables as constants produces a hierarchy of increasingly simpler sub-
problems [13]. The simplest, 0 1−→ 1 NAP, is equivalent to finding the set of B
leaves whose induced subtree (including the root) has maximum PD and can be
solved by a greedy algorithm [14] [12]. 0 ci−→ 1 NAP on ultrametric (all leaves
equidistant from the root) trees and (1−xi)

1−→ (1−κxi) for general trees where
xi is a variable probability and κ is a constant factor such that 0 ≤ κ ≤ 1 can
likewise be solved in polynomial time by greedy algorithms [7]. Given that 0 ci−→ 1
NAP is itself a generalization of the Knapsack problem which is NP-Hard, it is
extremely unlikely that an exact, polynomial-time solution for this kind of NAP
or any generalizations will ever be found. Pardi and Goldman [13] did find a
pseudopolynomial-time dynamic programming algorithm for the 0 ci−→ 1 NAP
on general (non-ultrametric) trees that makes the realistic assumption that B
is polynomial in n. They also show that any instance of ai

ci−→ 1 NAP can be
transformed to an instance of 0 ci−→ 1 NAP, allowing their algorithm to solve
such instances as well.

This algorithm relies upon the observation that the solution to 0 ci−→ 1 NAP
for any clade can be obtained from the solutions to its two child clades [13].
Which solutions to use depends on how the budget is allocated to the two sub-
problems. If the budget at Ke is b, then there are b+ 1 ways to split it across Kl

and Kr. By solving these b+1 pairs of subproblems, the optimal solution can be
found in the pair with maximum total E(PD) (plus the expected contribution
of e). Recursively proceeding in this fashion from the root down would not yield
an efficient algorithm as the number of possible budget divisions increases expo-
nentially with each level of the tree. Instead, the clades are processed bottom-up
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Fig. 1. An example why the dynamic programming algorithm of [13] does not work
for general instances of NAP. The optimal allocation for the clade containing y and z
is not part of a globally optimal solution.

from the leaves. All b+1 scores are computed and stored in a dynamic program-
ming table for each clade. Each score can be determined by taking the maximum
of b + 1 possible scores of its child clades, which are already computed or com-
puted directly from (2) if the clade contains a single leaf. Each table entry can
therefore be computed in O(B) time. There are O(B) entries per clade and O(n)
clades in the tree giving a total running time of O(nB2).

This procedure does not work for ai
ci−→ bi NAP because this version of the

problem does not display the same optimal substructure [13]. In 0 ci−→ 1, the
dynamic programming algorithm implicitly maximizes the survival probability
of the clade in addition to its E(PD) value. The total score of the tree is a
function of both of these values which is why the algorithm works for this case.
In ai

ci−→ bi NAP, a budget assignment that maximizes survival probability of the
clade does not guarantee that it will have maximal E(PD) and vice versa. The
correct allocation cannot be made without knowledge of the entire tree; hence,
the optimal substructure exploited by [13] for 0 ci−→ 1 NAP is not present. As
an example, consider the instance of NAP in Figure 1 with B = 3. The optimal
solution is to conserve w and y for E(PD) = 225. However, locally computing
the best allocation of budget 1 for the clade containing y and z will select z for
conservation, and any chance of obtaining the optimal solution will be lost. In
this case, it is more important to maximize the survival probability of the clade
rather than E(PD), but there is no way for an algorithm to be aware of this
without globally solving the entire tree.

2 NAPX Algorithm

2.1 Description

In this section we present NAPX, an O
(

nB2h2 log2 n
log2(1−ε)

)
dynamic programming

algorithm for ai
ci−→ bi NAP that produces a (1−ε)-approximation of the optimal
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solution, where h denotes the height of T . As that in [13], our algorithm is only
polynomial if B is polynomial in n. This assumption is justifiable if, for example,
B is expressed in millions of dollars and its value will be a reasonably small
integer. Without loss of generality, we also assume that no single cost exceeds
the budget.

NAPX essentially generalizes the dynamic programming table of [13] by com-
puting for each clade, each desired survival probability of the clade, and any
budget between 1 and B, the maximum E(PD) score achievable while guaran-
teeing this survival probability. This way, we need not make the choice between
maximizing E(PD) or probability as the tables are constructed. From the defi-
nition of E(PD) in (2), the probability of survival of an edge can be written as
a function of its two children. Let Pe denote the survival probability of edge e,
and l and r be e’s children. Then

Pe = Pl + Pr − PlPr. (3)

In the optimal solution for NAP on T , assume b dollars are assigned to clade Ke

and e survives with probability p. It follows that i and b− i dollars are assigned
to Kl and Kr respectively where 0 ≤ i ≤ b. These subclades must survive with
probabilities j and p−j

1−j (or 0 when p = j = 1), for some 0 ≤ j ≤ p, in order to
satisfy (3). Because the probability is continuous, we discretize it into intervals
by rounding it down to the nearest multiple of a chosen constant α. Probabilities
less than a chosen cutoff value pmin are rounded to zero.

p ∈
{
0, α
logα pmin�, ..., α2, α, 1

}

If two non-zero probabilities lie in the same interval, their ratio is at most α.
If they are in consecutive intervals, their ratio is likewise bounded by α2. For
notational convenience, we define a mapping π(·) that rounds a probability to
the lower bound of its corresponding interval.

π(p) =

{
0 if p < pmin

α�logα p otherwise.

We now formally describe our algorithm. For each edge e, we construct a two-
dimensional table Te where Te(b, p) stores the optimal expected diversity of Ke

given that b dollars are assigned to it and it survives with a probability that lies
no less than p. The table is constructed in the following manner if e is a pendant
edge incident to the leaf for species s.

Te(b, p) =

⎧
⎪⎨

⎪⎩

asλ(e) if b < cs and p = π(as),
bsλ(e) if b ≥ cs and p = π(bs), or
−∞ otherwise.

(4)

Otherwise, Te is computed from the tables of its two children, Tl and Tr.

Te(b, p) = pλ(e) + max
i,j,k

{Tl(i, j) + Tr(b− i, k)} (5)
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subject to

i ∈ {0, 1, 2, ..., b},
j, k ∈ {0, α
logα pmin�, ..., α2, α, 1},

π(j + k − jk) = p

The E(PD) score for the entire tree can be obtained by attaching an edge er

of length 0 to the root and finding maxj{Ter(B, j)}. The tables are computed
from the bottom up, and each time an entry is filled, pointers are kept to the two
entries in the child tables from which it was computed. This way the optimal
budget allocation can be obtained by following the pointers down from the entry
for the optimal score for er.

2.2 Approximation Ratio

In this section, we express the worst-case approximation ratio as a function of
the constants pmin and α introduced above, beginning with pmin. Note that
since any species s with cs > B can be transformed into a new species s′ with
cs′ = 0, bs′ = as and as′ = as without affecting the outcome, we can safely
assume that cs ≤ B for all s ∈ X .

Lemma 1. Let I be an instance of NAP for which there exists a constant k such
that all bi values are greater than n−k. Consider a transformed instance I ′ where
all ai values in the range (0, pmin) are rounded to 0. Let OPT (I) and OPT (I ′)
be the expected PD scores of the optimal solutions to I and I ′ respectively. Then
the ratio of these scores is bounded as follows:

OPT (I ′) ≥ (1 − nk+1pmin)OPT (I)

Proof. Let path(s) be the set of edges comprising the path from leaf s to the
root. We define w(s) as the expected diversity of the path from s to the root if
s is conserved:

w(s) = bs
∑

e∈path(s)

λ(e).

Let wmax = maxs∈X{w(s)}. This value allows us to place a trivial lower bound
on the optimal solution (recalling that we can assume that cs ≤ B).

wmax ≤ OPT (I). (6)

We also observe that if any species s survives with a non-zero probability smaller
than pmin in the optimal solution, its contribution to OPT(I) will be bounded

by
pminw(s)

bs
. It follows that

OPT (I ′) ≥ OPT (I) −
∑

s∈X

pminw(s)
bs

.
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Since bs ≥ n−k and w(s) ≤ wmax, we can express the bound as

OPT (I ′) ≥ OPT (I) − n
pminwmax

n−k
.

Dividing by OPT(I) yields

OPT (I ′)
OPT (I)

≥ 1 − nk+1pminwmax

OPT (I)
.

From (6) we obtain
OPT (I ′)
OPT (I)

≥ 1 − nk+1pmin,

which completes the proof. ��

The size of the probability intervals in the tables, determined by α, also affects
the approximation ratio. This relationship is detailed in the following lemma.

Lemma 2. Let OPTe(b, p) denote the optimal expected PD score for clade Ke

if e survives with probability exactly p and b dollars are allocated to it. Now
consider an instance of NAP such that all as and bs are either 0 or at least
pmin. For any OPTe(b, p) where e is at height h in the tree, there exists a table
entry Te(b, p′) constructed by NAPX such that the following conditions hold:

i) Te(b, p′) ≥ αhOPTe(b, p)
ii) p′ ≥ αhp

Proof. If p = 0, then OPTe(b, p) = 0 and the lemma holds. For the remainder
of the proof, we assume p ≥ pmin. The proof will proceed by induction on h,
the height of e in the tree, beginning with the base case where h = 1 and e is a
pendant connected to leaf s. We need only consider the cases where the optimal
solution is defined. So without loss of generality, assume we have OPTe(b, as) =
λ(e)as. From (4), we know there is an entry Te(b, π(as)) = asλ(e) and therefore
both i) and ii) hold.

We now assume that the lemma holds for h ≤ x and consider some edge e at
height x+ 1. By definition, OPTe(b, p) can be expressed in terms of its children
l and r.

OPTe(b, p) = pλ(e) + OPTl(i, j) +OPTr(b − i, k)

where j + k − jk = p. From the induction hypothesis, there exist

Tl(i, j′) ≥ αxOPTl(i, j) and
Tr(b− i, k′) ≥ αxOPTr(b− i, k)

where j′ ≥ αxj and k′ ≥ αxk. Let q = j′ + k′ − j′k′. It follows that

q ≥ αxj + αxk − α2xjk ≥ αxp. (7)
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The left inequality in (7) holds because j′+k′−j′k′ increases as j′ or k′ increase,
so long as their values do not exceed 1. This can be checked by observing that
the partial derivatives with respect to j′ and k′ are 1−k′ and 1−j′, respectively.
Tl(i, j′) and Tr(b− i, k′) will be considered when computing the entry Te(b, p′)

where p′ ≥ π(q). Since q ≥ pmin, we have π(q) ≥ αq because it simply rounds q
to the nearest multiple of α. Therefore, p′ ≥ αx+1p and Te(b, p′) can be expressed
as follows.

Te(b, p′) ≥ p′λ(e) + Tl(i, j′) + Tr(b− i, k′)

≥ αx+1pλ(e) + αxOPTl(i, j) + αxOPT (b− i, k)

≥ αx+1(pλ(e) +OPTl(i, j) +OPT (b− i, k)

≥ αx+1OPTe(b, p) ��

Combining Lemmas 1 and 2 allows us to state that NAPX returns a solution
that is at least a factor of (1 − nk+1pmin)αh of the optimal solution. In this
section we show that these results also imply that a (1 − ε) approximation can
be obtained in polynomial time for an arbitrary constant ε.

Lemma 3. O
(

h logn
| log(1 − ε)|

)
probability intervals are required in the table in

order to obtain a 1 − ε approximation.

Proof. The number of probability intervals, t, required for the table is bounded
by the number of times 1 must be multiplied by α to reach pmin. Hence αt ≤ pmin

and

t =
⌈

log pmin

logα

⌉
. (8)

From Lemmas 1 and 2 we can obtain the desired approximation ratio by selecting

α =
√

(1 − ε)
1
h and pmin = 1−

√
1−ε

nk+1 . Plugging these values into (8) gives

t =

⎡

⎢
⎢⎢
⎢
⎢

log
(

1−
√

1−ε
nk+1

)

log
(√

(1 − ε)
1
h

)

⎤

⎥
⎥⎥
⎥
⎥

=
⌈

2h(log(1 −
√

1 − ε) − (k + 1) logn)
log(1 − ε)

⌉

In the numerator, log(1 −
√

1 − ε) is dominated by − logn so we can express t
asymptotically as

t ∈ O

(
−h logn
log(1 − ε)

)

��

Theorem 1. NAPX is a (1 − ε)-approximation with time complexity
O
(

nB2h2 log2 n
log2(1−ε)

)
.
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Proof. For each table entry T (b, p), we must find the maximum of all possible
combinations of entries in the left and right child tables that satisfy b and p.
These combinations correspond to the possible {i, j, k} triples from (5). There
are O(Bt2) such combinations as i corresponds to the budget and j and k cor-
respond to probability intervals. Furthermore, for fixed values of p and j, there
are potentially O(t) different values of k that could satisfy π(j + k − jk) due to
rounding. It follows that a naive algorithm would have to compare all O(Bt2)
combinations when computing the maximum in (5) for each table entry.

Fortunately, because π(j+k−jk) is monotonically nondecreasing with respect
to either j or k, we can directly compute for any fixed p and j the interval of k
entries that satisfy π(j + k − jk) = p:

[⌈
logα

(
αp− j

1 − j

)⌉
,

⌈
logα

(
p− j

1 − j

)⌉)
.

Finding the value of k in the interval such that T (b − i, k) is maximized is
effectively a range maxima query (RMQ) on an array. Regardless of the size of
the interval, such a query can be performed in constant time if instead of an array,
the values are stored in a RMQ structure as described in [2]. Such structures
are linear both in space and the time they take to create, meaning that we can
use them to store each column in the table (corresponding to budget value i)
without adversely affecting the complexity. Now, when given a pair {i, j}, the
optimal value of k can be computed in constant time, bringing the complexity
of filling a single table entry to O(Bt), the number of combinations of the pair
{i, j}.

There are O(Bt) entries in each table, and a table for each of the O(n) edges
in the tree. The space complexity is therefore O(nBt) and the time complexity is
O(nB2t2). Substituting t for the value that yields a (1− ε) approximation ratio

shown in Lemma 3 gives O
(
nB2h2 log2 n

log2(1 − ε)

)
.

2.3 Expected Running Time

Since in general the height of a phylogenetic tree with n leaves is O(n), the
running time derived above is technically cubic in n. Fortunately, for most inputs
we can expect the height to be much smaller. In this section, we will provide
improved running times for trees generated by the two principal random models.
Additionally we will show that caterpillar trees, which should be the pathological
worst-case topology according to the above analysis, actually have a much lower
complexity.

The Yule-Harding model [16][6], also known as the equal-rates-Markov model,
assumes that trees are formed by a succession of random speciation events. The
expected height of trees formed in this way, regardless of the speciation rate, is
O(log n) [3] giving a time complexity of O

(
nB2 log4 n
log2(1−ε)

)
. A large-scale study of

published phylogenies has shown that in practice, trees are less balanced than
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the Yule-Harding model predicts [10] and may better fit a Uniform random
model [1]. Under the uniform model, all possible topologies are equally likely
and the expected tree height is O(

√
n) [3]. Such trees can therefore be processed

by NAPX in O
(

n2B2 log2 n
log2(1−ε)

)
time.

A caterpillar tree is a tree where all internal nodes are on a path beginning
at the root, and therefore has height n. This implies that every internal edge
has at least one child edge that is incident to a leaf. Suppose edge e has child l
that is incident to the leaf for species s. This table only contains two meaningful
values: Tl(0, as) and Tl(cs, bs). Therefore to compute entry Te(b, p), only O(1)
combinations of child table entries need to be compared and the time complexity
is improved to O

(
n2B log n
log(1−ε)

)
.

3 Conclusion

NAPX is, to our best knowledge, the first polynomial-time algorithm for ai
ci−→ bi

NAP that places guarantees on the approximation ratio. While there are still
some limitations, especially for large budgets or tree heights, our algorithm still
significantly increases the number of instances of NAP that can be solved. More-
over, our expected running time analysis shows that the algorithm will usually be
much more efficient than its worst-case complexity suggests. This work towards
a more general solution is important if the Noah’s Ark Problem framework is
to be used for real conservation projects. Some interesting questions do remain,
however. Does NAP remain NP-Hard when the budget is constrained to be poly-
nomial in n? We conjecture that it is, but the usual reduction from Knapsack is
clearly no longer valid. We would also like to find an efficient algorithm whose
complexity is independent of h and/or B.
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Abstract. Minimum Common String Partition (MCSP) and related
problems are of interest in, e.g., comparative genomics, DNA fingerprint
assembly, and ortholog assignment. Given two strings with equal symbol
content, the problem is to partition one string into k blocks, k as small as
possible, and to permute them so as to obtain the other string. MCSP is
NP-hard, and only approximation algorithms are known. Here we show
that MCSP is fixed-parameter tractable in suitable parameters, so that
practical instances can be efficiently solved to optimality.

1 Parameterization of MCSP

String z is called a substring of string x, if there exist strings u, v (possibly empty)
such that x = uzv. The same substring z may appear at several positions in x.
By a segment of x we mean an occurence of a substring at a specific position in
x. A substring or segment may be empty, where an empty segment is defined
by its location between two consecutive symbols. Length |x| is the number of
symbol occurences in x.

In the Minimum Common String Partition (MCSP) problem, two strings
x, y of length n, that contain the same symbols equally many times, shall be
partitioned each into k segments called blocks, so that the blocks in x and y
constitute the same multiset of substrings. Cardinality k shall be minimized. An
equivalent formulation is: Split x into k segments so that y equals the concate-
nation of some permutation of them. A position between two consecutive blocks
is called a break, hence we have k − 1 breaks in each of x and y. MCSP is of
interest in comparative genomics [4], to answer questions like: Is a DNA string
possibly obtained by rearrangements of another DNA string? The problem is
NP-hard even in very restricted cases [7], and several approximation algorithms
and non-approximability results are known [7,5,8]. A related problem is Mini-

mum Common Integer Partition (MCIP): Given two multisets of at most
k integers, split these integers into a minimum number of integer summands
so that the two resulting multisets are equal. Biological motivations include
ortholog assignment and DNA fingerprint assembly. MCIP also appears as a
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subproblem in certain instances of MCSP. The complexity status is similar to
that of MCSP [3,12]. Due to lack of space we refer to [3,4] for details about the
biological background.

Since k and other input parameters are expected to be much smaller than n
in biological applications, it is sensible to ask whether MCSP is fixed-parameter
tractable (FPT). To our best knowledge, this issue has not been addressed be-
fore in the literature. A problem with input length n and one or more input
parameters is in FPT, if it can be exactly solved in time polynomial in n, for
any fixed parameter values, where the exponent in the polynomial bound must
be constant, i.e., independent of the parameters. For an introduction to FPT
see, e.g., [6]. Many problems in computational biology, among them sequence
comparison problems, are NP-hard but in FPT, here we only refer to [2,9].

Besides the number k of blocks we consider two more parameters for MCSP:
We define the distance ratio d = n/m, where m is the minimum distance between
breaks. A limited d means that we ignore (or do not expect) solutions where some
blocks are very short fragments. We define the repetition number r of a string
x as the maximum i so that x = uviw holds for some strings u, v, w, where v
is nonempty. Although repeats in genomes are not uncommon, the repetition
number in biological sequences will often be small. (See the remark below.)

Contributions and organization of the paper
The obvious question is whether MCSP is fixed-parameter tractable in k. While
this remains open, we show fixed-parameter tractability in combined parameters
k, r. For ease of presentation we step two paces back and derive first a weaker
result in Section 2: an FPT algorithm for MCSP with combined parameters
k, d, r. Actually, parameters d, r suffice, since obviously k ≤ d must be assumed.
The algorithm has a simple structure: First we roughly guess the breaks and the
matching of blocks “in parameterized time”. Then we are left with a rather spe-
cial linear system of equations that enables us to check whether a solution of this
shape exists. Since we test all possible branches, the same approach can also be
used to enumerate all solutions that respect the given parameters. (If alternative
solutions exist, it is not clear which of them is the correct interpretation of data,
hence one should consider them all. See [1] for another example.) The time is
O(n) for any fixed parameters. We remark that linear-time approximation algo-
rithms for MCSP and the related reversal distance problem are known if other
parameters are bounded, namely if every symbol may appear only constantly
many times [10,11]. This case is interesting, e.g., if the symbols represent genes.
Since r cannot be larger than the number of appearances of every symbol, our
result implies also that MCSP, with bounded number of appearances of every
symbol, is in FPT.

We also state a simple explicit upper bound for the parametric part of the com-
plexity bound, however it seems overly pessimistic. The restriction that aligned
substrings be equal is so strong that the actual number of branches to consider
is typically much smaller, although there might be malicious cases. In Section 3
we illustrate the issue and add some O(n) time heuristics that discard hopeless
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branches quickly. Simplicity of the scheme, and the observation that almost no
branching takes place, should make the approach very practical.

In Section 4 we get rid of parameter d and replace it with k ≤ d. That is,
we also identify arbitrarily short blocks. The difficulty is to separate the close
breaks, which requires different techniques and arguments. Our O(n log n) time
algorithm (for any fixed k, r) applies the one from Section 2 in an iterative fashion
on a decreasing scale. In Section 5 we point out that MCIP is polynomial for any
fixed k (which is simple). Since MCIP is related to MCSP instances with high r,
this gives rise to the conjecture that MCSP might be fixed-parameter tractable
with k as the only parameter. Section 6 gives some outlook. Proofs are basically
complete, but due to space limitations, some passages are only sketched and not
much formalized, and no pictures to illustrate the algorithms could be included.

2 An FPT Algorithm for MCSP

A few definitions and basic facts around periodic strings will be needed. A non-
empty string p is called a period of string z if z = spit, where i > 0 is an integer,
s a suffix and t a prefix of p (both may be empty). Every string has a short-
est period, uniquely determined up to cyclic shifts. If string z overlaps itself on
(1 − α)|z| symbols (i.e., prefix and suffix of z of that length are equal strings),
where 0 < α ≤ 1, then z has a period of length α|z|. We will call certain seg-
ments of x or y fragile (conserved), when we decided to put (not to put) breaks
there. Two segments without a symbol in between are adjacent.

Now we start describing our algorithm for parameters k, d, r. For some c > d
specified below, we split both x and y into c segments called pieces, of length
roughly n/c < n/d. Since we consider only blocks of length at least n/d, a piece
can contain at most one break. (Breaks exactly between two adjacent pieces are
arbitrarily assigned to, e.g., the piece to the left.) We guess the k−1 pieces that
contain breaks, these are our fragile segments. We branch on these choices. We
also guess the matching between the resulting k blocks of x and y that shall
be aligned, and branch on the possible matchings, i.e., permutations of blocks.
Clearly, the number of branches is bounded by some function of k and c. Note
that only the exact positions of breaks in the designated fragile segments are yet
unknown in every branch.

If we choose c ≥ 2d, at least one entire piece in every block is conserved.
Now consider any pair of matched blocks s from x, and t from y. Let s′ be
the concatenation of all conserved pieces in s. Although the exact borders of
s are yet undetermined, we know that s′ is a subsegment of s. Let t+ be the
segment of y consisting of all pieces that are certainly in t or may contribute
some symbols to t. (The latter ones are the delimiting fragile pieces. Informally,
t+ is the “maximal possible t”.) Clearly, s′ must be aligned to some segment of
t+. If s′ occurs several times in t+, we guess the alignment partner of s′ in t+,
and branch on these choices. Assume that the start positions of two occurrences
of s′ in t+ have a distance α|s′|, 0 < α ≤ 1. Then s′ has a period of length α|s′|,
which is repeated 1/α times. It follows α ≥ 1/r, hence the number of branches
is bounded by some function of c and r.
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As c ≥ 2d was the only condition on c, we may choose c = 2d. Now the
total number of branches (deciding on: pieces with breaks, matching of blocks,
and alignment of some conserved segments in every pair of matched blocks) is
bounded by some function of d and r. Still it remains to determine the exact
breaks. We call a pair of conserved segments of x and y an aligned pair if we
have already decided to align them (as we did above in every pair of matched
blocks). Now we are, in every branch, in a situation addressed by:

Lemma 1. Consider an instance x, y of MCSP. Suppose that we have already
fixed the following items:
(i) exactly k − 1 fragile segments in both x and y, which are pairwise disjoint,
non-adjacent, do not include the first or last symbol of x or y, and have length
at most n/k each,
(ii) a matching between the k conserved segments of x and y which are defined
by cutting out these fragile segments,
(iii) an aligned pair in every matched pair of blocks given by (ii).
Then we can, in linear time, construct a solution to this constrained instance of
MCSP, or prove that no such solution exists.

Proof. In the following, the terms fragile segment and conserved segment refer
only to the 2(k − 1) + 2k distinguished segments specified in (i) and (ii). Since
only k− 1 breaks are allowed, every fragile segment contains exactly one break.
The left (right) semi-block of a block is the segment between the member of the
aligned pair and the left (right) break delimiting this block.

We define an auxiliary graph as follows. For every fragile segment f , we create
two vertices that represent the two segments of f to the left and to the right of
the break that will be placed in f . We call them the left and right vertex of f .
We create edges that join
(1) the left and right vertex of every fragile segment,
(2) the left vertices of any two fragile segments in x and y whose conserved
segments adjacent to the left are matched,
(2’) the right vertices of any two fragile segments in x and y whose conserved
segments adjacent to the right are matched.

The weight of a vertex is the length of the segment it represents. These weights
are unknown in the beginning (as the breaks are yet unknown), but we get a
linear equation for the weights of any two vertices joined by any edge, due to
the following observations:
(1) The total length of any fragile segment is known.
(2) We have an aligned pair in the conserved segments to the left, and the number
of symbols in their right semi-blocks must be the same in x and y.
(2’): similar to (2).

For a solution to the whole constrained problem instance, it is sufficient that:
(a) every symbol from x and y gets into exactly one block, and
(b) the matched semi-blocks to the left or right of aligned pairs have equal
lengths, and are also equal as strings.

Equations from (1) ensure (a), and equations from (2) and (2’) ensure the
length condition in (b). Equality of strings in (b) must be tested separately,
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and not every solution to the linear system yields already a valid solution to
the constrained MCSP instance. However, thanks to the structure of our linear
system we need not search the entire solution space. Instead we do the following
in every connected component of the graph.

We guess the weight of one vertex v. Then, the weights of all other vertices are
uniquely determined by a trivial elimination procedure. Any solution specifies
the lengths of certain semi-blocks. If no value of the weight of v yields a valid
solution, i.e., if some weights become negative or some symbols that get aligned
are not equal, then no valid solution can exist at all. On the other hand, since
the semi-blocks to the left or right of an aligned pair are always associated to the
same connected component, condition (b) is fulfilled if all aligned semi-blocks
pass the equality test in their respective connected components. It follows that
any combination of valid solutions from the connected components is a valid
overall solution. Thus we can solve the subproblems and establish (a) and (b) in
the connected components independently.

Analysis: We show the linear time bound. In an O(n) time preprocessing in x and
y we index the symbols from left to right, so that the length of any one segment
can be computed by one subtraction in O(1) time. Then the “graphical” linear
system of equations can be set up in O(k) time. Connected components are
determined in O(k) time as well. Once the weight of one vertex in a connected
component of size k′ is fixed, we can solve the linear system trivially in O(k′)
time. The test whether the corresponding partitioning of x and y is valid can
also be executed in O(k′) time, but this step needs some more preparation:

Since we have already fixed an aligned pair in every matched pair of blocks,
we can easily determine the maximum number of symbols in any pair of aligned
semi-blocks: Note that aligned symbols have to be equal. This gives a threshold
for the number of symbols in every fragile segment that can be attached to the
block to the left and right, respectively. For any solution to the linear system it
suffices now to check whether each variable is nonnegative and below its thresh-
old. All thresholds can be computed once in the beginning, in another O(n) time
preprocessing for the instance, just by symbol comparisons and counting.

In every connected component we need to try at most n/k possible weights
of the start vertex, since this is the maximum length of a fragile segment. As we
saw above, for every initial vertex weight we can solve the system and validate
the solution in O(k′) time. Thus we need O(k′n/k) time in the component. For
all components together this sums up to O(kn/k) = O(n). ��

Theorem 1. MCSP is fixed-parameter tractable in the combined parameters d, r
(distance ratio and repetition number). More specifically, MCSP can be solved in
O(n) time for any fixed values of d, r.

Proof. In the branching phase we fix the items specified in Lemma 1. The number
of branches is bounded by a function of d, r. The assumptions of Lemma 1 are in
fact satisfied: The selected fragile segments are pairwise disjoint by construction,
and c ≥ 2d ensures that none of them are adjacent or include the beginning or
the end of x or y. Fragile segments have length n/c ≤ n/2d < n/k. Now we solve
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every constrained instance in O(n) time. Any solution found in a branch is a
solution to the unconstrained instance, and if all branches are unsolvable, then
so is the unconstrained instance. ��

The scheme can be modified to efficiently compute a concise representation of
all solutions to an instance of MSCP that comply with the given parameter
values. We consider all branches anyhow (i.e., no potential solution is lost),
and the solution space of the linear system of equations and inequalities (for
nonnegativity, thresholds) can be concisely described.

The graphs in Lemma 1 have actually a very special structure, but we did not
make use of this fact, because linear time is already optimal for trivial reasons.
However, in practice one can save physical running time also by accelerating
some parts of a linear-time algorithm, therefore we go into some more details
now. Note that the graphs corresponding to our linear systems merely consist
of even-length cycles. We call an edge, corresponding to an equation u + v = a
and u − v = a (where u, v are variables and a some constant), an additive and
subtractive edge, respectively. Now observe that, in every cycle, additive and
subtractive edges alternate. Thus we can easily divide the vertices in two sides
so that edges between vertices on different sides (on the same side) are additive
(subtractive). If a linear system with two variables per equation, where each
variable is integer and ranges from 0 to an individual threshold, has such a
“quasi-bipartite” graph, we can find a solution in every connected component
already by a logarithmic number of guesses of one variable: All variables on
one side can only increase simultaneously, while all variables on the other side
decrease. Hence we can find two extremal values of our probe variable (such that
all other variables are still in their ranges) by binary search. As we said, this
does not help the worst-case time bound, but it speeds up the search if the graph
has only a few connected components.

3 Branching Heuristics

A closer look at the above FPT algorithm gives an explicit bound on the hidden
factor in O(n): The k − 1 (out of 2d) pieces in x with breaks can be chosen in
(2d− k)k−1/(k − 1)! ways, since no adjacent pieces have breaks. Blocks can be
permuted in k! ways. Since the block lengths are now fixed, up to a tolerance of 2
piece lengths, we can choose the pieces in y with breaks, successively from left to
right, in 3k−1 ways. In every pair of matched blocks, at most r possible alignment
partners exist. In total we get at most kr(3(2d−k)r)k−1 branches. However, this
is a crude bound. For typical, rather irregular input strings we expect that the
vast majority of branches can be quickly discarded: Note that already one symbol
mismatch in the segments we try to align renders a branch impossible. Therefore
it is worthwhile to add to the basic algorithm some simple and fast heuristics
that recognize many hopeless branches before we run the procedure of Lemma 1.
Some ideas have been already brought up in approximation algorithms [11], but
not in the context of parameterized exact algorithms. To apply the linear-time
procedure we need enough “well-separated” fragile segments (see Lemma 1 for
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details). A simple observation is that a segment of x not occuring as a substring
in y must be fragile in x. We can search for all occurrences in y of a particular
substring in O(n) time, using suffix trees or linear-time string matching.

We suggest a top-down approach to find shorter and shorter fragile segments:
Halve the string x recursively, and in the jth iteration check which minimal
concatenations of the obtained 2j pieces have no occurences in y. Moreover, from
the obtained list F of fragile segments we can erase those containing shorter
fragile segments detected later. Clearly, the time for this procedure remains
bounded by n times a polynomial of distance ratio d. We need not even fix a
parameter value d in advance, but we may also run the process until it succeeds
with enough fragile segments, or some time limit is reached. There is a good
chance that many long segments have only a few occurences in y: Intuitively,
many occurences of many different segments must heavily overlap, hence they
can exist only if y contains periodic segments with many repetitions. Therefore
we should, in this way, quickly obtain k− 1 disjoint fragile segments. (Here it is
also good to notice that the maximum number of pairwise disjoint segments in a
given set F of segments is easily determined by a linear-time greedy algorithm.)
Next, for aligning pairs of conserved segments it is barely necessary to try all
k! matchings. For the same reason as above, our conserved segments should
typically have few occurences in y, so that relatively few matchings remain.

We do not only keep the number of matchings small, but also the combinations
of breaks, based on another simple fact: Once we know some set F of fragile
segments, the set of breaks must be a hitting set of size at most k − 1 for F . In
particular, breaks can only lie in the union U of all hitting sets of size k−1. Often
U will be considerably smaller than the segments covered by F , and consist of
several disjoint segments (ideally k− 1). On the other hand, we can compute U
in linear time, so that the O(n) time bound is not sacrificed. We give the details
now. In the following, a “point” is a position between two symbols.

Theorem 2. Given a set F of segments in a string of length n (none of them
contained in another segment of F ) and an integer k, we can compute the union
U of all hitting sets of size k − 1 for F in O(n) time.

Proof. First note that |F | ≤ n. All segments in F not containing a specific
point p are divided in two sets LF (p) and RF (p): the segments to the left and
to the right of p. A minimum hitting set of LF (p) is obtained by an obvious
greedy algorithm that scans the points from left to right and always adds the
latest possible point to the hitting set. This yields the size lf(p) of a minimum
hitting set for LF (p), for all p together, in O(n) time. Similarly we proceed
with all LR(p) and get all lr(p). Finally observe that p ∈ U if and only if
lf(p) + rf(p) ≤ k − 2. ��

- 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22
x c a b c c d a a a a b a b c c a b a b d c d
y b d c d c a b c c a b a b d a a a c c a b a
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We illustrate the heuristics on this small example taken from [5]. Refining
the “grid” of segment endpoints on string x by successive halving, we find the
following segments that do not appear in y and must be fragile: [1, 22], [1, 11],
[12, 22], [1, 6], [7, 11], [17, 22], [4, 6], [9, 11], [5, 7], [7, 10], [11, 14], [18, 21], etc.
Taking only the minimal fragile segments found until now, in left-to-right order,
we retain the following set F : [4, 6], [5, 7], [7, 10], [9, 11], [11, 14], [18, 21]. This F
has 4 disjoint intervals, hence k ≥ 5. We try whether k = 5 is enough. The simple
algorithm from Theorem 2 restricts the possible breaks to segments [5, 6], [9, 10],
[11, 14], [18, 21]. That is, under the assumption k ≥ 5 we obtained 4 disjoint
fragile segments, where the 2 leftmost breaks are even uniquely determined.
Next we align the conserved segments between the breaks with segments of y.
Segments [1, 5] = cabcc, [6, 9] = daaa, and [21, 22] = cd appear only once in y.
Segment [14, 18] = ccaba appears twice, but one such segment in y overlaps cabcc,
hence this alignment is also unique. Now [10, 11] = ab must be placed between
cabcc and daaa in y. Here we have a case with repetition number 2, but we
never had to branch on the permutations of blocks in this small example. Finally,
the algorithm from Theorem 1 applied to these constellations finds the optimal
solution x = cabcc|daaa|abab|ccaba|bdcd and y = bdcd|cabcc|abab|daaa|ccaba.

4 Separating Close Breaks

Consider a constrained instance of MCSP with aligned pairs and fragile seg-
ments as in Lemma 1. The linear algorithm in Lemma 1 works only under the
assumption that each of the designated fragile segments has exactly one break.
Now we relax this assumption and suppose that, in each of the fragile segments,
all breaks are within a segment of length w called a window. Here, w is the max-
imum window size in all fragile segments. The case solved by Lemma 1 is w = 0.
In the following, long blocks of a partitioning of x, y are those containing the
conserved segments that we identified so far, in the constrained instance. The
others are short blocks. In order to apply a procedure similar to Lemma 1, we
will need windows that have a uniform length t and are also aligned, therefore
we have to enlargen the windows first.

Lemma 2. If there is a solution to the MCSP instance constrained as above,
then there exist windows in the fragile segments with the following properties:
(1) All breaks are contained in the windows.
(2) All windows have exactly the same length t < 2kw.
(3) The long blocks in the partitioning are aligned in such a way that also the ends
of windows are aligned. (But still the long blocks may end inside the windows.)
Equivalently, symbols in windows are only aligned to symbols in windows in the
other string.

Proof. We will only extend the given windows, to obtain properties (2) and (3).
Thus, (1) is preserved automatically. First we extend every window to the left
and to the right (if necessary) to establish (3). Since all long blocks end inside
the given windows, we never have to move the end of a window by more than
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w symbols outwards. Thus we have amplified the windows to length at most
3w. In the next phase we extend them further to equalize their lengths, without
destroying (3). The difficulty is that any two windows from x and y whose left
(right) ends are aligned must be extended simultaneously to the left (right).

Since (3) is already true, the sum of lengths of all windows in x and y are
equal. We define a graph, with windows as vertices, where edges connect windows
whose left or right ends are aligned. Every vertex is labeled with the length of the
window it represents. Clearly, this graph is just a disjoint union of even cycles,
and vertices come alternatingly from x and y. (The graph is related to the one in
Lemma 1, but not identical.) Consider any cycle. We are allowed to add 1 to the
labels of any pair of adjacent vertices. As long as two adjacent vertices have non-
maximum labels, we simply increment them. If no vertices with non-maximal
labels are adjacent, we choose some vertex with minimum label. Suppose this
vertex represents a segment of x (the other case is symmetric). Because of the
equal sums of labels in x and y, there must exist also a vertex from y with non-
maximum label. The two chosen vertices have an odd distance in the cycle and
split it in two paths, in the natural sense. Now it is easy to increase the labels
of our two special vertices by 2, and the all other labels by only 1. Iterating the
procedure we arrive at property (2). To bound the number of steps, consider
the sum of differences between the maximum label and all vertex labels. The
above procedure decreases this quantity by 2, and initially it was no larger than
2(k − 1)w. Hence the final window length is less than 2kw. ��
Theorem 3. MCSP is fixed-parameter tractable in the combined parameters k, r
(number of blocks and repetition number). More specifically, MCSP can be solved
in O(n logn) time for any fixed values of k, r.

Proof. We modify the linear system of Lemma 1 as follows: For every fragile
segment, the sum of the two assigned variables plus t must equal the length of
this fragile segment. Similarly as in Lemma 1 we solve the linear system and test
whether some solution is valid, in the sense that the parts of long blocks outside
the windows are aligned. At this stage we do not yet attempt to determine the
breaks inside the windows, let alone the matching of short blocks.

First we set t = 0 and test whether a solution with exactly one break per fragile
segment exists. If this fails, we need more breaks. In this case we determine the
smallest t > 0 that gives a valid solution. A crucial observation for t > 0 is
that the window positions in all valid solutions differ by some O(t) = O(kw).
Namely, if two valid solutions with remote window positions exist, then any two
windows whose (e.g.) left ends are aligned must contain equal strings in one
of the solutions, because these two windows are aligned segments within long
blocks in the other solution. But then we can append these equal windows to
the aligned long blocks to the left, and this can be done for all pairs of aligned
long blocks. But this means that one break per fragile segment would be enough,
which contradicts the failure for t = 0. In conclusion, if a solution with window
size w exists, there is one window of length t := O(kw) in every fragile segment,
so that all breaks are inside these windows, where t is the same everywhere. (We
need not branch on O(n) possible window positions!) The next difficulty is that
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we might have found a valid solution to the linear system for some t > 0, but a
solution to the constrained MCSP instance exists only for some larger t, that is,
some breaks are actually outside our windows. We have to analyze this situation.

Consider a partitioning where the total length of long blocks is maximal. In
this partitioning, consider any pair of matched long blocks b, c which are not
the rightmost blocks in x, y. Let u and v be the blocks next to the right of b
and c, respectively. (The reasoning for the left-hand side is similar.) Assume
|u| ≤ |v|, the other case is symmetric. Consider the windows to the right of b
and c. Note that the segments to the left of the window in x and y, until the
long blocks, are equal substrings, and the left ends of u and v are aligned. Hence,
if u is entirely to the left of the window, then u is a prefix of v. Now we can
transform the partitioning as follows. We append u and the prefix of length |u|
of v to the long blocks. If u = v, and u, v are matched, then the number of blocks
decreases. Otherwise, we split the matching partner of v in two blocks: the prefix
of length |u| and the (possibly empty) rest. The former is matched with the old
alignment partner of u, and the latter (if not empty) with the rest of v. This
yields a new partitioning, where the number of blocks is not increased, but the
long blocks have larger total length, contradicting the maximality. Hence there
exists a partitioning where, in every fragile segment, at most one break is to the
left of the window we have determined. By symmetry, the same statement holds
“to the right”.

Now consider a fragile segment where the outermost breaks have the maximum
distance (in all fragile segments), denoted w. Recall that our t = O(kw) may
be too small, but as shown above, we can assume that at most one break is to
the left and to the right, respectively, of our window of length t in this fragile
segment. If an outermost break is away from the window by more than, say, t
symbols, there must still exist a segment of length Ω(t/k) without breaks, in
the segment of length t next to the window, on the same side. The other case is
that all breaks are still in an extended window of length O(t). Since w = Ω(t/k),
there must be a segment of length Ω(t/k2) without breaks in the window.

Finally we are able to guess a window and therein a new conserved segment
that separates two breaks. Due to the minimum distance guarantee for two of
the breaks, the number of branches is bounded by a function of parameter k.
We perform this branching step in both x and y, to guess at least one new
aligned pair of conserved segments. Details are similar as in Section 2 (guessing
pieces with breaks, all possible matchings, etc.). This step increases the number
of blocks, hence, after less than k such branching steps we have finally separated
all breaks. For any fixed value of the parameters, the time is O(n log n): We
always find the smallest suitable t by binary search, solving O(log n) times a
system of equations and checking validity in O(n) time. ��

5 MCIP with a Fixed Number of Integers

MCIP appears as a subcase of MCSP, in a sense: It is not hard to transform
any instance of MCIP to an equivalent instance of MCSP where the integers are
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represented as periodic strings of those lengths. (However, this is not a polyno-
mial transformation, since integers are represented unary.) The obtained MCSP
instances have large repetition numbers, a case that is not captured by our FPT
results. Therefore it is interesting to notice the following “pseudo FPT” result:

Theorem 4. For any fixed cardinality of multisets, MCIP can be solved in poly-
nomial time.

Proof. As observed in [3], MCIP is equivalent to the following problem: Partition
both multisets into the same number of sub-multisets, as many as possible, and
match them one-to-one, so that the integers in any matched pair have the equal
sums. From any such partition of the multisets, one can construct in polynomial
time an optimal solution to the MCIP instance, by a simple elimination process.
(Due to lack of space we omit the straightforward details of this equivalence.)

It remains to find a pair of partitionings that can be matched. The number of
partitionings is obviously bounded by a function of cardinality of multisets (by
the Stirling number, to be specific). We may naively generate all partitionings
of both multisets, and check whether a pair of them have the same sums of sub-
multisets. The last step can be executed in polynomial time (in the number of
partitionings), with help of lexicographic sorting. ��

Due to the above correspondence to repetition numbers, this gives hope that
MCSP might be fixed-parameter tractable in k as the only parameter: Theorem
4 might be applied, inside some sophisticated extension of the previous FPT
algorithms, to any substring with many repeats in x, y. But we have to leave
this as an open question.

6 Conclusions and Further Research

We proved that MCSP is fixed-parameter tractable in some natural parameters,
indicating that MCSP is exactly solvable in practice. A simple algorithm needs
distance ratio d (length ratio of blocks) and repetition number r of periodic
segments as parameters, a second algorithm with weaker parameters k (number
of blocks) and r is more intricate. We also proposed some simple heuristics that
probably discard the vast majority of conceivable branches in most instances.
Still it would be interesting to prove good worst-case bounds on the number of
branches, using deeper combinatorics of strings. An intriguing open question is
whether MCSP is fixed-parameter tractable in k. Since repeats are quite possible,
it would be nice to get rid of parameter r. Implementing the FPT algorithms and
testing their time performance of on real biological strings would complement
the theoretical findings. A natural extension of MCSP is to tolerate a limited
number of mismatches in the solutions. Apparently our FPT scheme can nicely
accommodate this extra parameter: In the validity tests of solutions we just have
to count the mismatches.
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sorting by reversals. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS
(LNBI), vol. 4463, pp. 293–304. Springer, Heidelberg (2007); journal version to
appear in IEEE/ACM Transactions on Computational Biology and Bioinformatics

2. Cai, L., Huang, X., Liu, C., Rosamond, F., Song, Y.: Parameterized complexity
and biopolymer sequence comparison. The Computer Journal, Special Issue in
Parameterized Complexity 51, 270–291 (2008)

3. Chen, X., Liu, L., Liu, Z., Jiang, T.: On the minimum common integer partition
problem. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS,
vol. 3998, pp. 236–247. Springer, Heidelberg (2006)

4. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Assign-
ment of orthologous genes via genome rearrangement. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 2, 302–315 (2005)

5. Chrobak, M., Kolman, P., Sgall, J.: The greedy algorithm for the minimum common
string partition problem. In: Jansen, K., Khanna, S., Rolim, J., Ron, D. (eds.)
APPROX 2004. LNCS, vol. 3122, pp. 84–95. Springer, Heidelberg (2004)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

7. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partitioning prob-
lem: Hardness and approximations. In: Fleischer, R., Trippen, G. (eds.) ISAAC
2004. LNCS, vol. 3341, pp. 484–495. Springer, Heidelberg (2004); also in The Elec-
tronic Journal of Combinatorics 12, paper R50 (2005)

8. He, D.: A novel greedy algorithm for the minimum common string partition prob-
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Abstract. For a given metabolic network, we address the problem of
determining the minimum cardinality set of substrate compounds neces-
sary for synthesizing a set of target metabolites, called the inverse scope
problem. We define three variants of the inverse scope problem whose so-
lutions may indicate minimal nutritional requirements that must be met
to ensure sustenance of an organism, with or without some side products.
Here, we show that the inverse scope problems are NP-hard on general
graphs and directed acyclic graphs (DAGs). Moreover, we show that the
general inverse scope problem cannot be approximated within n1/2−ε for
any constant ε > 0 unless P = NP. Our results have direct implications
for identifying the biosynthetic capabilities of a given organism and for
designing biochemical experiments.

Keywords: scope, metabolic networks, completeness.

1 Introduction

Availability of fully sequenced genomes for several organisms has rendered it
possible to reconstruct their metabolic networks and further characterize their
biosynthetic capabilities. Identifying the biosynthetic capabilities of a given or-
ganism is crucial for the development of cost-efficient energy sources, as they
are directly related to plant biomass [20], [16], [3]. On the other hand, know-
ing the compounds necessary for obtaining a desired product can be employed
in designing optimal environmental conditions, in the sense of minimizing the
nutrients for biosynthesis, and for effective altering of bioprocesses to assist the
industrial manufacture of chemicals [4].

Several mathematical methods have been developed to study the biosynthetic
capabilities of metabolic networks, including: metabolic control analysis [21],
flux balance analysis [2], metabolic pathway analysis [19], cybernetic modeling
[15], biochemical systems theory [18], to name just a few. Many of these methods
require detailed kinetic information to carry out the analysis—a condition which
is often impossible to satisfy.
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A method which relies only on an available metabolic network and limited
knowledge about the stoichiometry of the included biochemical reactions has
been recently developed and applied to study the biosynthetic capabilities of
various organisms [6], [11]. This method is based on the concept of a scope: The
basic principle is that a reaction can only operate if and only if all of its substrates
are available as nutrients or can be provided by other reactions in the network.
Starting from the nutrients, called seed compounds, operable reactions and their
products are added to an expanding subnetwork of a given metabolic network.
This iterative process ends when no further reaction fulfills the aforementioned
condition. The set of metabolites in the expanded subnetwork is called the scope
of the seed compounds and represents all metabolites that can be in principle
synthesized from the seed by the analyzed metabolic network [11].

The scope concept has been applied to a variety of problems, such as: hier-
archical structuring of metabolic networks [12], comparison of metabolic capa-
bilities of organism specific networks [7], metabolic evolution [8], and changes of
metabolic capacities in response to environmental perturbations [9].

In [10], the inverse problem was addressed as that of determining minimal sets
of seed compounds from which metabolites that are essential for cellular mainte-
nance and growth can be produced by a given metabolic network. There, a greedy
algorithm was applied and heuristics inspired by biological knowledge were intro-
duced to determine biologically relevant minimal nutrient requirements. Whereas
by this approach a large number of minimal solutions may be obtained, the min-
imum cardinality set of seed compounds remains unknown and moreover, it is
unclear how well this minimum was approximated by the proposed heuristic.

For a given metabolic network, we investigate the general inverse scope prob-
lem of determining the minimum cardinality set of seed compounds necessary
for the synthesis of a specific compound or a set of compounds. In particular,
the latter set may comprise metabolic precursors that an organism requires for
maintenance or growth. Therefore, solving this inverse problem may indicate
minimal nutritional requirements that must be met to ensure sustenance of the
organism. The nutrients which can be provided in synthesis are often restricted
to a specific set, in which case we address the inverse problem with a forbidden
set. In addition, we address the problem of finding the minimum cardinality set
of seed compounds that are necessary for synthesis of a given set of compounds
and, at the same time, guarantee that a specific set of compounds are not created
as side products. This is the inverse problem with two forbidden sets.

The problems addressed here have applications that span various fields: In a
sensor network with directed communications, one is interested in finding the
minimum number of nodes that can be used for fast delivery of information. In
the field of computational geometry, one may formulate the problem of deter-
mining the minimum number of flood-lights that can illuminate a given polygon
[1], while in automated reasoning one may seek automated deduction with min-
imum number of axioms [5]. We note that none of the related variants has the
constraint that all precursors must be present for an action to take place. Con-
tributions. Here, we show that the inverse scope problems are NP-hard on
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general graphs and directed acyclic graphs (DAGs). We also demonstrate that
the inverse scope problem with two forbidden sets on general graphs cannot be
approximated within n1/2−ε for any constant ε > 0 unless P = NP. In addition,
we discuss the practical implications of the hardness of approximation results.

2 Problem Definition

A metabolic network is typically represented by a directed bipartite graph G =
(V,E). The vertex set of G can be partitioned into two subsets: Vr, containing
reaction nodes, and Vm, comprised of metabolite nodes, such that Vr∪Vm = V (G).
The edges in E(G) are directed either from a node u ∈ Vm to a node v ∈ Vr , in
which case the metabolite u is called a substrate of the reaction v, or from a node
v ∈ Vr to a node u ∈ Vm, when u is called a product of the reaction v.

The scope concept is related to reachability in the metabolic network graph
G: A reaction node v ∈ Vr is reachable if all of its substrates are reachable. Given
a subset S of metabolite nodes, a node u ∈ Vm is reachable either if u ∈ S or if
u is a product of a reachable reaction. With these clarifications, we can present
a precise mathematical formulation for the scope of a set of seed compounds:

Definition 1. Given a metabolic network G = (V,E) and a set S ⊆ Vm, the
scope of S, denoted by R(S), is the set of all metabolite nodes reachable from S.

For a given metabolic network G = (V,E) and a set S ⊆ Vm, the scope R(S) can
be determined in polynomial time of the order O(|E| · |V |), as can be established
by analyzing the following algorithm:

We define the inverse scope problem as follows:

Inverse Scope (IS)

INSTANCE: Given a metabolic network G = (V,E) and a subset of metabo-
lites P ⊆ Vm.
PROBLEM: Find a subset of metabolites S ⊆ Vm such that P ⊆ R(S).
MEASURE (min): Cardinality of S.

Often, there is a restriction to the subset of metabolites from which we would
like to identify S, the seed compounds synthesizing P . In that case, we address
the inverse scope problem with a forbidden set V (G) − S′, such that S ⊆ S′,
defined below:

Inverse Scope with a Forbidden Set (ISFS)

INSTANCE: Given a metabolic network G = (V,E) and two subsets of
metabolites V (G) − S′, P ⊆ Vm, where V (G) − S′ is the forbidden set and
P is the set of products.
PROBLEM: Find a subset of metabolites S ⊆ S′ such that P ⊆ R(S).
MEASURE (min): Cardinality of S.
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Algorithm 1. Scope for a set of seed metabolites S in a metabolic network
G

Input: G = (Vm ∪ Vr, E), metabolic network
S, set of seed metabolites, S ⊆ Vm

Output: R(S), scope of S
mark all nodes in V (G) unreachable1

mark all nodes in Vr unvisited2

mark all nodes in S reachable3

repeat4

foreach node v ∈ Vr do5

if v is reachable then6

mark v as reachable7

end8

end9

if there is a reachable unvisited node v ∈ Vr then10

mark v visited11

mark successors of v reachable12

end13

until no reachable unvisited nodes in Vr14

R(S) ← all reachable nodes in Vm15

It is interesting to also consider the problem of determining the set of nutrients
to be provided in the synthesis of a given set of products while not yielding a
pre-specified set of side products. The study of this problem may, for instance,
indicate how to design a biochemical experiment to minimize the effect of some
undesirable compounds. To ensure that a specific set of metabolites is not syn-
thesized, we modify ISFS as follows:

Inverse Scope with Two Forbidden Sets (IS2FS)

INSTANCE: Given a metabolic network G = (V,E) and three subsets of
metabolites V (G)−S′, F, P ⊆ Vm, where V (G)−S′ and F are the forbidden
sets and P is the set of products.
PROBLEM: Find a subset of metabolites S ⊆ S′ such that P ⊆ R(S) and
F ∩R(S) = ∅.
MEASURE (min): Cardinality of S.

Remark 1. Note that by taking S′ = V (G) in ISFS, every instance of IS becomes
an instance of ISFS, and ISFS can be restricted to IS. In addition, every instance
of IS2FS with F = ∅ is an instance of ISFS. Therefore, IS2FS is the most
general of the three problems.

For completeness, we show the decision versions of the three problems defined
above:

Inverse Scope Decision (ISd)

INSTANCE: Given a metabolic network G = (V,E), subset of metabolites
P ⊆ Vm, and an integer K.
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PROBLEM: Does there exist a subset of metabolites S ⊆ Vm such that
P ⊆ R(S) and |S| ≤ K.

Inverse Scope with a Forbidden Set Decision (ISFSd)

INSTANCE: Given a metabolic network G = (V,E), two subsets of metabo-
lites V (G) − S′, P ⊆ Vm, where V (G) − S′ is the forbidden set and P is the
set of products, and an integer K.
PROBLEM: Does there exist a subset of metabolites S ⊆ S′ such that
P ⊆ R(S) and |S| ≤ K.

Inverse Scope with Two Forbidden Sets Decision (IS2FSd)

INSTANCE: Given a metabolic network G = (V,E), three subsets of
metabolites V (G) − S′, F, P ⊆ Vm, where V (G) − S′ and F are the for-
bidden sets and P is the set of products, and an integer K.
PROBLEM: Does there exist a subset of metabolites S ⊆ S′ such that
P ⊆ R(S), F ∩R(S) = ∅, and |S| ≤ K.

In the next section we present the results regarding the NP-hardness of the
three inverse scope problems.

3 Hardness Results

An optimization problemΠ is shown to be NP-hard by establishing a polynomial
time reduction from a problem known to be NP-complete to the decision version
of Π . First, we show that IS2FS is NP-hard on a general graph by providing
a reduction from Minimum Distinguished Ones (MIN-DONES). We also
show that ISFS is NP-hard even on DAGs by providing a reduction from the
Set Cover (SC) problem. In a similar way, we show that IS, too, is NP-hard
when restricted to DAGs. These results will later be used for obtaining the
approximation results for the three problems.

Theorem 1. Inverse Scope with Two Forbidden Sets Decision problem
is NP-complete.

Proof. First, we need to show that IS2FSd is in NP. Given an instance of
IS2FSd with three subsets of nodes S, F, P ⊆ Vm(G), one can find R(S), by em-
ploying Algorithm 1, and check whether P ⊆ R(S), F ∩R(S) = ∅ and |S| ≤ K
in polynomial time.

Next, we provide a reduction from the MIN-ONESd problem. An instance of
the decision version of MIN-ONES is given by a set of n variables Z, collection
C of disjunctive clauses of 3 literals, and an integer K ′ (a literal is a variable or
a negated variable in Z). The problem is then to find a truth assignment for Z
that satisfies every clause in C such that the number of variables in Z that are
set to true in the assignment is at most K ′.

Given an instance of MIN-ONESd, we can construct an instance of IS2FSd,
a bipartite directed graph G = (V,E) with V (G) = Vm ∪ Vr, three subsets of
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nodes S′, F, P ⊆ Vm(G), and an integer K as follows: For each variable xi ∈ Z,
we use the gadget shown in Figure 1. The gadget is composed of six nodes yT

i,1,
yT

i,2, x
T
i , xF

i , pi, and fi connected through four reactions—r1i with xT
i and xF

i

as substrates and fi as a product, r2i with yT
i,1 and yT

i,2 as substrates and xT
i

as a product, r3i with xT
i as substrate and pi as a product, and r4i with xF

i as
substrate and pi as a product. Moreover, for each clause in C we add a node cj .
A node xT

i is connected to cj via a reaction if variable xi appears non-negated
in cj ; similarly, a node xF

i is connected to cj via a reaction if variable xi appears
negated in cj. Finally, we let S′ be composed of all yT

i,1, y
T
i,2, and xF

i nodes, P
be composed of all cj and pi nodes, while F be comprised of all fi nodes.

Fig. 1. Gadget for the construction of IS2FSd instance

Note that xT
i is reached if and only if its two corresponding nodes yT

i,1 and
yT

i,2 are included as substrates. Moreover, the inclusion of pi nodes in P and fi

nodes in F ensures that exactly one of the xT
i and xF

i is chosen. Therefore, to
complete the construction, we set K = n+K ′.

A solution to MIN-ONESd can be transformed to a solution of IS2FSd of
cardinality K = n + K ′ by taking those nodes yT

i,1 and yT
i,2 in S′ whose corre-

sponding variable xi is set to TRUE in the solution of MIN-ONESd. Moreover,
the solution also includes the xF

i whose value can be set to FALSE. All cj nodes
can be reached, since a solution to MIN-ONESd guarantees that at least one
literal in the clause cj has value TRUE. Similarly, all pi nodes are also reached.
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Moreover, a valid truth assignment guarantees that no pair xT
i and xF

i is in the
solution of MIN-ONESd; thus, the nodes in F cannot be accessed.

Given a solution S to IS2FSd on G, the solution to MIN-ONESd can be
obtained by assigning value TRUE to that variable xi in Z whose corresponding
nodes yT

i,1 and yT
i,2 are in S; the remaining variables are assigned value FALSE.

Since all cj nodes are reachable, then each of them has at least one directed
path from a node in S and thus the value of the corresponding clause is TRUE.
Moreover, since no node in F is in the scope of S, the reconstructed truth
assignment is valid.

Since IS2FSd can be solved if and only if there is a solution to MIN-ONESd,
we have the NP-completeness of the problem in the theorem.

Corollary 1. The Inverse Scope with Two Forbidden Sets problem is
NP-hard on general graphs.

For the inverse scope with a forbidden set we have:

Theorem 2. InverseScopewithaForbiddenSetDecision isNP-complete
even on DAGs.

Proof. The decision version of ISFS is in NP since for any given set of metabo-
lites S, we can find R(S), by using Algorithm 1, and check whether P ⊆ R(S)
in polynomial time.

We provide a polynomial time reduction from the SCd problem: An instance
of the SCd problem is given by a collection C of subsets from a finite set U and
an integer K ′. The problem then is to determine whether there is a set cover for
U of cardinality at most K ′, i.e. a subset C′ ⊆ C such that every element of U
belongs to at least one member of C′ and |C′| ≤ K ′.

Given an instance of the SCd problem we design an instance of the ISFSd

problem as follows: First, we build the metabolic network G which must be
bipartite. Let the number of subsets in the collection C be denoted by p. For every
subset Ci ∈ C we create a reaction node ri, 1 ≤ i ≤ p; thus, we have p reaction
nodes. Let the number of elements in U be denoted by n. For every element
xj ∈ U we create a metabolite node, denoted by xj , 1 ≤ j ≤ n. Furthermore,
we create p additional metabolite nodes, denoted by yi, 1 ≤ i ≤ p. Therefore,
Vr = {ri | 1 ≤ i ≤ p} and Vm = {xj | 1 ≤ j ≤ n} ∪ {yi | 1 ≤ i ≤ p}. Finally, we
set P = {xj |1 ≤ j ≤ n}.

A reaction ri is connected via a directed edge to a metabolite xj if and only if
the subset Ci corresponding to the node ri contains the element x represent by
the node xj . Additionally, we include a directed edge from yi to ri, 1 ≤ i ≤ n.

Finally, we set S′ = {yi | 1 ≤ i ≤ p} and let the integer K of the decision
version of the ISFS problem be equal to K ′. This construction can be completed
in time polynomial in the size of the SC instance. The construction is illustrated
in Figure 2.

If we have a solution to the SC problem and it is given by a subset C′,
|C′| ≤ K ′ then the solution to the ISFS problem, the subset S ⊆ S′, is comprised
of the nodes in {yi | 1 ≤ i ≤ p} that are connected via a directed edge to reaction
nodes ri representing the subsets in C′, since R(S) = P .



106 Z. Nikoloski et al.

Fig. 2. Instance of ISFS obtained from the instance of SC with U = {1, 2, 3, 4} and
C = {{1}, {2, 3}, {3, 4}, {2, 4}}

Conversely, if we have a solution to the ISFS problem, i.e., a subset S ⊂ S′,
|S| ≤ K then R(S) = P. The solution to the SC problem, a subset C′ ⊆ C, can
be obtained by including those elements Ci ∈ C corresponding to the reaction
nodes ri to which there exists an edge from yi ∈ S in G.

Since the ISFS problem can be solved if and only if there is a solution to
the SC problem, we have the NP-completeness of the problem in the theorem.
Furthermore, the polynomial time construction results in an acyclic directed
graphs (DAGs), so ISFSd is NP-complete on DAGs.

We then have the following corollary:

Corollary 2. The Inverse Scope with a Forbidden Set problem is NP-
hard even on DAGs.

We can use a similar approach as in the proof of Theorem 2 to obtain the
following result:

Theorem 3. The Inverse Scope problem is NP-hard even when restricted to
DAGs.
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Proof. The ISd problem is in NP even when restricted to DAGs: For any given
set of metabolites S and an integer K, we can find R(S), by using Algorithm 1,
and check whether P ⊆ R(S) and |S| ≤ K in polynomial time.

Given an instance of the SCd problem we design an instance of the ISd

problem, a graph G and an integer K, on DAGs as follows: First, we build the
metabolic network G which must be bipartite. Let the number of subsets in the
collection C be denoted by p. For every subset Ci ∈ C we create a metabolite
node yi; thus, we have p metabolite nodes from this step of the construction.
Let the number of elements in U be denoted by n. For every element xj ∈ U we
create a metabolite node, denoted by x1

j , 1 ≤ j ≤ n.
A metabolite yi is connected via a directed path of length 2 with a middle re-

action node ri to a metabolite x1
j if and only if the subset Ci, corresponding to

the node yi, contains the element x represented by the node xj . Additionally, we
include p− 1 copies of each node x1

j , denoted by xi
j , 2 ≤ i ≤ p, and connect them

to the in-neighbors of x1
j . Finally, we let P contain all xi

j nodes and K ′ = K. We
increase the number of elements per set to ensure that only nodes among yi are
chosen as a solution to ISd, so that it can be transformed to a solution of SCd.

If we have a solution to the SCd problem and it is given by a subset C′,
|C′| ≤ K ′ then the solution to the ISd problem, the subset S ⊆ Vm, is comprised
of the nodes in {yi | 1 ≤ i ≤ p} representing the subsets in C′, since R(S) = P .

Conversely, if we have a solution to the ISd problem, i.e., a subset S ⊆ Vm,
|S| ≤ K, then R(S) = P . The set C′ can be obtained in the following way: Let
S contains a node u from {xi

j | 1 ≤ i ≤ p, 1 ≤ j ≤ n}. There are two cases:
If u can be reached by some yi, then a solution to SCd excludes this element
from S. If u cannot be reached by some yi, then none of its remaining p − 1
copies can be reached (p ≥ 2). Including one yi representing a set that contains
u can always decrease the cardinality of S by a at least two. The solution to
the SCd problem, a subset C′ ⊆ C, therefore includes those elements Ci ∈ C
corresponding to the elements in S as well as the nodes added by the algorithm
to cover nodes from {xi

j | 1 ≤ i ≤ p, 1 ≤ j ≤ n} which are initially included in S
but are removed by the previous algorithm. It follows that |C′| ≤ K ′.

Since the ISd problem can be solved if and only if there is a solution to the
SCd problem, we have the NP-completeness of the problem in the theorem.
Furthermore, the polynomial time construction results in an acyclic directed
graphs (DAGs), so ISd is NP-complete on DAGs.

4 Approximation Results

Let us recall a few definitions about approximability. Given an instance x of an
optimization problem A and a feasible solution y of x, we denote by m(x, y) the
value of the solution y, and by optA(x) the value of an optimum solution of x.
Here, we consider minimization problems. The performance ratio of the solution
y for an instance x of a minimization problem A is

R(x, y) =
m(x, y)
optA(x)

.
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For a constant ρ > 1, an algorithm is a ρ-approximation if for any instance
x of the problem it returns a solution y such that R(x, y) ≤ ρ. We say that
an optimization problem is constant approximable if, for some ρ > 1, there
exists a polynomial-time ρ-approximation for it. APX is the class of optimiza-
tion problems that are constant approximable. An optimization problem has a
polynomial-time approximation scheme (a PTAS, for short) if, for every constant
ε > 0, there exists a polynomial-time (1 + ε)-approximation for it.

L-reduction was introduced as a transformation of optimization problems
which keeps the approximability features [17]. L-reductions in studies of ap-
proximability of optimization problems play a similar role to that of polynomial
reductions in the studies of computational complexity of decision problems. For
completeness we include the following definition:

Definition 2. Let A and B be two optimization problems. Then A is said to be
L-reducible to B if there are two constants α, β > 0 such that:

1. there exists a function, computable in polynomial time, which transforms
each instance x of A into an instance x′ of B such that optB(x′) ≤ α·optA(x),

2. there exists a function, computable in polynomial time, which transforms
each solution y′ of x′ into a solution y of x such that |m(x, y) − optA(x)| ≤
β · |m(x′, y′) − optB(x′)|.

Remark 2. This reduction preserves PTAS, i.e., if A is L-reducible to B and B
has a PTAS then A has a PTAS as well.

Remark 3. From the above, if δ is a lower bound of the worst-case approximation
factor of A, then ρ = δ

α·β is a lower bound of the worst-case relative error of B.

We employ L-reduction to obtain results about the lower bound of the worst-case
approximation factor for IS2FS.

Theorem 4. Inverse Scope with Two Forbidden Sets on a graph G with
n nodes cannot be approximated to within a factor of n1/2−ε in polynomial time
for any constant ε > 0, unless P = NP.

Proof. To construct an L-reduction, we first choose A to be MIN-ONES and
B, IS2FS. Jonsson [14] has shown that MIN-ONES is NPO PB-complete, and
is not approximable within |Z|1/2−ε for any ε > 0. Given an instance x of MIN-

ONES, we construct an instance x′ of IS2FS the same as in Theorem 1. From
the proof of Theorem 1, we have optB(x′) = n+ optA(x), so optB(x) ≤ optA(x′)
and α = 1. Moreover:

|m(x, y) − optA(x)| ≤ |m(x′, y′) − optB(x′)|,

so β = 1. Thus, we have n1/2−ε for the lower bound of the worst-case approxi-
mation factor of IS2FS by Remark 3.
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Hendorf et al. [10] developed a heuristic for finding minimal sets of seed com-
pounds from which metabolites that are essential for cellular maintenance can
be produced. As every minimum set of seed compounds is also minimal, the
heuristic can approximate the IS problem. The heuristic takes as input an or-
dered list of all metabolites in a given metabolic network and a set of target
metabolites. It then continually removes a metabolite from the beginning of the
list, while recalculating the scope of the remainder of the list. If the resulting
scope does not contain the full target set, the metabolite is inserted back in the
list; otherwise, it remains permanently removed. Clearly, the set of metabolites
contained in the list after the exhaustive search represents a minimal seed, as
the removal of any metabolite would result in a scope that does not contain all
target metabolites. Since different orderings of the list may result in a different
minimal set of seed metabolites, it is not known how well this heuristic approxi-
mates the IS problem. It remains as an open problem to develop provably good
approximation algorithms for all of the addressed inverse scope problems.

5 Instances of IS and ISFS in P

IS and ISFS are solvable in polynomial time on trees. In a tree metabolic net-
work, each metabolite, other than the root, is a product of a reaction with only
one substrate. In other words, a tree metabolic network is a tree rooted in a
metabolite node. Given a tree metabolic network T and a node u, let Su be the
set of predecessors of u. Given two sets S′, P ⊆ Vm(T ), the solution to ISFS on
T is given by the following greedy algorithm:

Algorithm 2. Algorithm for ISFS on a tree
Input: T = (Vm ∪ Vr , E), metabolic tree network
P ⊆ Vm, set of metabolites
S′ ⊆ Vm, the set to choose seeds
Output: S, S ⊆ S′, such that P ⊆ R(S)
foreach node u ∈ P do1

find the set Su2

end3

S ← ∅4

L ← order list of nodes from P5

while there is a node u ∈ L do6

while there is node v �= u, v ∈ L with Sv ∩ Su ∩ S′ �= ∅ do7

Su ← Su ∩ Sv ∩ S′ remove v from L8

end9

S ← S ∪ last common ancestor in Su10

remove u from L11

end12

output S13
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The algorithm works by finding the last common ancestor for as large a subset
of P as possible (lines 6 – 12). Since this subset is reachable from one node only,
its cardinality cannot be decreased and the algorithm is optimal.

Given two directed graphs G and H , the Cartesian product G�H is a graph
with node set V (G) × V (H) such that there is an edge {(u1, v1), (u2, v2)} ∈
E(G�H) if and only if: (1) u1 = u2 and {v1, v2} ∈ E(H) or (2) v1 = v2 and
{u1, u2} ∈ E(G).

Given a tree metabolic network T in which each reaction has precisely one
substrate and one product, let T̃ be the tree obtained by the following steps: (1)
for each reaction node, connect the substrate with all the products, (2) remove
reaction nodes. Note that T̃ includes only the metabolite nodes of T . These tree
will be called reduced.

Given a directed graph G, let Gs be the graph in which each edge of G
is subdivided (while keeping the direction of the edge). The nodes used in the
subdivision can be treated as reaction nodes, and all nodes in V (G) as metabolite
nodes.

If there is a graph G which can be represented as subdivision of the directed
product of T̃1 and T̃2 in the instance of a ISFS with a set P , such that ISFS

has a non-empty solution on T1 and T2, then:

S((T̃1�T̃2)s) = min {S(T1), S(T2)},
where S(T1) is a solution to ISFS with P mapped onto Vm(T1), and S(T2)
is a solution to ISFS with P mapped onto Vm(T2). Therefore, the problem is
polynomially solvable if G can be obtained by subdividing the Cartesian product
of two reduced tree metabolic networks.

We anticipate that similar constructions may lead to ways of decomposing
metabolic networks into smaller parts on which the inverse scope problems may
be polynomially solvable. However, we leave this as an open problem and a
direction for future research.

6 Discussion

The inverse scope problem discussed here is of great importance for biological
research since its solution allows to computationally predict minimal nutrient
requirements for the cultivation of organisms or to identify cost efficient combi-
nations of substrates for biotechnological applications.

The hardness of approximation results obtained in Section 4 bear some impor-
tant implications to the application of the inverse scope problems. For a general
graph, we show that IS2FS cannot be approximated within n1/2−ε for any con-
stant ε > 0 unless P = NP. The hardness of approximation and parameterized
complexity of IS and ISFS on general graphs remain as open problems. Our
conjecture is that their complexity on general graphs strongly depends on the
existence of directed cycles in the given metabolic network.

Our results imply that divising an efficient approximation algorithm will de-
pend on finding biologically meaningful metabolic networks representations with
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no or a small number of cycles. Analyses of real metabolic networks have demon-
strated the abundance of directed cycles, which result in high clustering and
small average path length [13]. Furthermore, one may observe that the directed
cycles are predominantly induced on the ubiquitous compounds, such as ATP
and NADH. Under physiological conditions, a cell maintains such substances
at rather constant levels guaranteeing their availability to the many processes
in which they are required. It is therefore unrealistic to assume that these com-
pounds have to be produced a priori. This allows for an alteration of the network
structure reflecting that ubiquitous compounds are always available, while still
describing the biochemical capabilities of the considered organism. Such a reduc-
tion will considerably reduce the number of cycles. Another type of cylces results
from the representation of a metabolic network as bipartite graph, in which a
reversible reaction is represented by two reaction nodes which are connected to
an identical set of reactants with directions of all corresponding edges reversed.
This results in cycles of length four for each reversible reaction. To remove such
cycles without altering the biochemical capabilities of the network is more chal-
lenging. A possible approach is to study networks with flux balance analysis to
identify those reactions which under physiological conditions always proceed in
one direction. We are currently working on applying our findings to metabolic
networks obtained from the KEGG database.

In addition, our analysis demonstrates that the concerted interrelation of bio-
chemical processes responsible for efficient systematic adjustment of an organ-
ism to changing environmental conditions are indeed complex and not yet well-
understood.
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Abstract. The neighbour-joining method reconstructs phylogenies by
iteratively joining pairs of nodes until a single node remains. The cri-
terion for which pair of nodes to merge is based on both the distance
between the pair and the average distance to the rest of the nodes. In
this paper, we present a new search strategy for the optimisation criteria
used for selecting the next pair to merge and we show empirically that
the new search strategy is superior to other state-of-the-art neighbour-
joining implementations.

1 Introduction

The neighbour-joining method by Saitou and Nei [8] is a widely used method for
phylogenetic reconstruction, made popular by a combination of computational
efficiency combined with reasonable accuracy. With its cubic running time by
Studier and Kepler [11], the method scales to hundreds of species, and while it is
usually possible to infer phylogenies with thousands of species, tens or hundreds
of thousands of species is infeasible. Various approaches have been taken to im-
prove the running time for neighbour-joining. QuickTree [5] was an attempt to
improve performance by making an efficient implementation. It outperformed the
existing implementations but still performs as a O

(
n3
)

time algorithm. Quick-
Join [6,7], instead, uses an advanced search heuristic when searching for the pair
of nodes to join. Where the straight-forward search takes time O

(
n2
)

per join,
QuickJoin on average reduces this to O (n) and can reconstruct large trees in
a small fraction of the time needed by QuickTree. The worst-case time com-
plexity, however, remains O

(
n3
)
, and due to a rather large overhead QuickJoin

cannot compete with QuickTree on small data sets. Other approaches, such as
“relaxed neighbour-joining” [3,10] and “fast neighbour-joining” [1] modify the
optimisation criteria used when selecting pairs to join. The method “relaxed
neighbour-joining” has a worst-case O

(
n3
)

running time while “fast neighbour-
joining” has O

(
n2
)

running time.
In this paper we introduce a new algorithm, RapidNJ, to lower the computing

time of canonical neighbour-joining. We improve the performance by speeding
up the search for the pair of nodes to join, while still using the same optimisa-
tion criteria as the original neighbour-joining method. Worst-case running time
remains O

(
n3
)
, but we present experiments showing that our algorithm outper-

forms both QuickTree, QuickJoin and an implementation of relaxed neighbour-
joining on all input sizes.

K.A. Crandall and J. Lagergren (Eds.): WABI 2008, LNBI 5251, pp. 113–122, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



114 M. Simonsen, T. Mailund, and C.N.S. Pedersen

2 Canonical Neighbour-Joining

Neighbour-joining [8,11] is a hierarchical clustering algorithm. It takes a distance
matrix D as input, where D(i, j) is the distance between cluster i and j. It then
iteratively joins clusters by using a greedy algorithm, which minimises the total
sum of branch lengths in the reconstructed tree. Basically the algorithm uses n
iterations, where two clusters (i, j) are selected and joined into a new cluster.
The two clusters are selected by minimising

Q(i, j) = D(i, j) − u(i) − u(j) , (1)

where

u(l) =
r−1∑

k=0

D(l, k)/(r − 2) , (2)

and r is the number of remaining clusters. When the minimum Q-value qmin =
min0≤i,j<r Q(i, j) is found, D is updated, by removing the i’th and j’th row
and column. A new row and column are inserted with the distances of the new
cluster. Distance between the new cluster a = i ∪ j and an old cluster k, are
calculated as

D(a, k) =
D(i, k) +D(j, k) −D(i, j)

2
. (3)

The result of the algorithm is a unrooted bifurcating tree where each initial
cluster corresponds to a leaf and each join creates an internal node. Finding the
pair of clusters to join in each round takes time O

(
n2
)
. The running time of

canonical neighbour-joining thus becomes O
(
n3
)
.

3 Rapid Neighbour-Joining

We seek to improve the performance of canonical neighbour-joining by speeding
up the search for the pair of clusters to join, while still using the same opti-
misation criteria as the canonical neighbour-joining method. The overall aim is
thus similar to that of QuickJoin, but the approach is different. The RapidNJ
algorithm presented in this paper is based on the following observation.

– When searching for qmin in (1), u(i) is constant in the context of row i.

This observation can be used to create a simple upper bound on the values of
each row in Q, thereby reducing the search space significantly. The upper bound
is dynamically updated based on the Q-values searched. While the algorithm
still has a worst-case running time of O

(
n3
)
, our experiments, reported later,

show that in practise the algorithm performs much better. To utilize the upper
bound, two new data structures, S and I, are used. S is a sorted representation
of D, and I maps S to D. Memory consumption is increased due to S and I.
The actual increase depends on implementation choices, and can be minimised
at the cost of speed. Worst case memory consumption remains O

(
n2
)
.
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3.1 Data Structures

The two new data structures, S and I, needed to utilize our upper bound,
are constructed as follows. Matrix S contains the distances from D but with
each row sorted in increasing order. Matrix I maps the ordering in S back
to positions in D. Let o1, o2, . . . , on be a permutation of 1, 2, . . . , n such that
D(i, o1) ≤ D(i, o2) ≤ · · · ≤ D(i, on), then

S(i, j) = D(i, oj) , (4)

and
I(i, oj) = j . (5)

3.2 Search Heuristic

Matrix S is used for a bounded search of qmin. First the maximum u-value umax

needs to be found. Recalculating all u-values, and finding the umax can be done
in time O (n). The following algorithm can then be used to search for the pair
(i, j) minimising Q(i, j):

1. Set qmin = ∞, i = −1, j = −1
2. for each row r in S and column c in r:

(a) if S(r, c) − u(r) − umax > qmin then move to the next row.
(b) if Q(r, I(r, c)) < qmin then set qmin = Q(r, I(r, c)), i = r and j = I(r, c).

The algorithm searches each row in S and stops searching a row when the
condition

S(r, c) − u(r) − umax > qmin (6)

becomes true or the end of a row is reached. If we reached an entry in a row
where (6) is true, we are looking at a pair (i, j), where D(i, j) is too large for
(i, j) to be a candidate for qmin, and the following entries in the row S(i), can
be disregarded in the search. This is easily seen by remembering that u(i) is
constant in context of a row, u(j) = umax in (6) and S(r, k) ≥ S(r, l) when
k > l. Whenever we see a new Q(r, I(r, c)) smaller than the previously smallest,
we remember the entry, using I to obtain the right column index in D. Q is
never fully calculated as this would require O

(
n2
)

time in each iteration. We
only calculate entries as they are needed.

The number of entries searched in each row depends on the current value
of the qmin variable. If qmin is close to the actual minimum value, more entries
in a row can most likely be excluded from the search. To improve the overall
performance, it is therefore important quickly to find a value for qmin as close as
possible to the actual minimum. We propose two strategies for this:

– The first entry in each row can be searched for a good minimum. Intuitively
S(r, 0) is likely to have a small Q-value compared to entries in the rest of
row i.
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– Cache one or more rows containing good minimums in each iteration, and
use these rows as a primer in the next iteration. The u-values do not change
very much in each iteration, so a row with a small q value is likely to have a
small q value in the succeeding iteration. Quite often, the minimum q value
can be found in the row containing the second best minimum found in the
previous iteration.

Since we can risk searching all entries in every row, the worst-case running time
of the algorithm is O

(
n3
)
.

3.3 Updating the Data Structures

The D matrix is updated as in the original neighbour-joining algorithm. Two
rows and two columns, corresponding to the two clusters we merged, are re-
moved. One row and column are inserted corresponding to the new cluster.

The S and I matrices need to be updated to reflect the changes made in the
D matrix. Removing the two rows can easily be done, but because the rows of S
are sorted, removing the columns is more complicated. Identifying and removing
entries in S corresponding to the two columns removed in D, would require
at least O (n) time depending on implementation of S. By keeping a record
of deleted columns, we can simply leave the obsolete entries in S. Identifying
obsolete entries while searching S gives a small performance penalty. The penalty
can be minimised by garbage collecting obsolete entries in S, when they take up
too much space. Our experiments have shown that most rows in S are removed,
before obsolete entries become a problem.

Let d be the number of remaining clusters after merging the cluster-pair (i, j),
into a new cluster. A new row with length d−1, and sorted by increasing distance
is inserted in S. The new row contains all new distances introduced by merging
(i, j). A row which maps the new row in S to the corresponding row in D is
created and inserted in I. Due to the time required for sorting, creating and
inserting the two rows in S and I takes O (d log d) time.

4 Results and Discussion

To evaluate the performance of our search heuristic, we have implemented the
RapidNJ algorithm using the second of the two strategies mentioned above to
initialise qmin with a good value. This strategy can be implemented with a small
overhead and it often initialises qmin with the actual minimum q value. RapidNJ
only caches the row containing the q value closest to qmin when the row is not
one of the two rows which are associated with qmin. This row is searched before
any other row thereby initialising qmin. The current implementation of RapidNJ
is available at http://www.birc.au.dk/Software/RapidNJ/.

QuickJoin [7], QuickTree [5] and Clearcut [10] have been used as reference
in our experiments. We have not been able to locate an implementation of
FastNJ [1] to include in our experiments. Clearcut is an implementation of re-
laxed neighbour-joining, while QuickJoin and QuickTree implements the canon-
ical NJ method. QuickJoin and QuickTree are both fast implementations and
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use different heuristics to optimize the running time of the canonical neighbour-
joining method. Clearcut uses a different algorithm, but it can reconstruct trees
with almost the same accuracy as canonical neighbour-joining. Phylip formatted
distance matrices were used as input, and Newick formatted phylogenetic trees
as output.

4.1 Environment

All experiments were preformed on a machine with the following specifications:

– Intel Core 2 6600 2.4 GHz with 4 MB cache
– 2 GB RAM
– Fedora 6, kernel 2.6.22.9-61 OS

QuickTree and Clearcut were written in C while QuickJoin and RapidNJ were
written in C++. All reference tools were compiled with the make script included
in the source code. We used the standard time tool available in the Fedora 6
distribution for measurements of running time. The “real time” output of the
time tool was used in all measurements. Three runs of each program on every
input was made, and the best time of the three runs was used in order to avoid
disturbance from other processes on the system.

4.2 Data

All four implementations were given distance matrices in phylip format as input.
We used the following two sources of data to evaluate the performance of the
four implementations.

The first data source was protein sequence alignments from Pfam [4]. The
alignments were translated into phylip formatted distance matrices using Quick-
Tree. Data sets from Pfam are real data, and we found that most data sets
contained lots of redundant data, i.e. the distance matrix contains rows i and
k where ∀j : D(i, j) = D(k, j). We also found several data sets where the same
taxa was represented twice. Apart from representing real data, Pfam data sets
also test how resilient the different optimisations and algorithms used in the four
implementations, are to irregular inputs. Figures 1, 2 and 3 show the results of
the experiments on these data.

The second data source was based on simulated phylogenetic trees. The trees
were generated using r8s [9], which is a tool for simulating molecular evolution
on phylogenetic trees. As a feature r8s can also simulate random phylogenetic
trees. We used the yule-c model to generate the data used in the experiments.
Simulated data sets provide a good basis for testing the algorithmic complexity
of the four implementations. They contain no redundant data, and the distance
matrices are always additive. Since the trees generated by r8s using the yule-c
model are clocklike, the distance matrices are actually ultrametric. This, how-
ever, should not yield an advantage for any of the methods, so in this study,
we do not make any effort to e.g. perturbe the branch lengths for obtaining
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Fig. 1. Performance of RapidNJ compared to QuickJoin, QuickTree and Clearcut on
small Pfam data (< 500 taxa)

non-ultrametric but additive distance matrices. Figure 5 shows the result of the
experiments on simulated data sets.

Experiments on data sets larger than 11000 taxa were not performed due to
the memory requirements of RapidNJ and QuickJoin. Both have O

(
n2
)

memory
consumption, but with larger constants than Clearcut and QuickTree.

4.3 Results on Pfam Data

On small inputs, see Fig. 1, all four implementations have good performance,
only minor differences separates the implementations. QuickJoin does suffer from
a large overhead, and has the longest running time, while RapidNJ has the short-
est. When we look at medium sized data sets (Fig. 2), QuickJoin starts to benefit
from the heuristics used. Again we observe that RapidNJ has a consistently short
running time compared to both QuickTree and QuickJoin. Clearcut comes quite
close to RapidNJs running time, and only a small constant factor separates the
two. QuickTree begin to suffer from the O

(
n3
)

time complexity on these input
sizes, while the other three implementations have a much lower running time.
Looking at large input sizes, see Fig. 3, QuickTree clearly suffers from its O

(
n3
)

time complexity, while Clearcut, QuickJoin and RapidNJ continue to perform
much better. On most data sets RapidNJ has half the running time of QuickJoin,
while the running times of Clearcut is nearly identical to those of RapidNJ on
most data sets.
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Fig. 2. Performance of RapidNJ compared to QuickJoin, QuickTree and Clearcut on
medium Pfam data (500–2000 taxa)

Some outliers belonging to all four implementations can be observed in Fig. 1,
2 and 3. The most noticeable are observed on medium and large data sets, where
the running time of RapidNJ on some data sets of approximately the same size
differs quite a lot. We have investigated the problem, and found that it to some
extent can be explained by redundant data. Redundant data are taxa with equal
distances to all other taxa and a mutual distance of 0. They are quite common
in Pfam data sets and affect the performance of RapidNJ negatively. In data
sets where the mutual distance between taxa varies, the number of new entries
in the Q matrix which fall below the upper bound is roughly the same as the
entries which are joined. In data sets containing m redundant taxa the number
of q values falling below the upper bound can suddenly explode. Every time an
entry in the Q matrix which is related to a redundant taxa falls below the upper
bound, at least m − 1 additional entries also fall below the upper bound. If m
is large enough, the running time of RapidNJ increases significantly. Among the
data sets which gave rise to outliers in the running time of RapidNJ, we found
some where more than one quarter of all taxa where redundant. QuickJoin is
also affected by redundant data but to a less extent than RapidNJ. Clearcut
seems to be unaffected while QuickTree actually benefits from redundant data
due to a heuristic which treats redundant taxa as a single taxon.

Not all deviating running times can be explained by redundant data. We
found that a very few data sets from Pfam, contained large sets of taxa where
the mutual distances are concentrated in small range. In rare cases these data
sets increased the running time of RapidNJ by up to a factor two.
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simulated data sets

To test the impact of redundant data, we implement a preprocessing phase
where identical rows are joined before neighbour-joining is applied. When using
this preprocessing phase, the output is a tree with a slightly different topology
than those produces by the canonical neighbour-joining algorithm. The difference
lies mainly in the subtrees containing redundant data, and can be explained by
the order which the redundant taxa were joined. It is a close approximation
of a canonical neighbour-joining tree, but this implementation mainly serves
to illustrate the problem with redundant data. The result of experiments with
preprocessing is presented in Fig. 4, which shows that the number of deviating
running times are reduced significantly.

4.4 Results on Simulated Data

Results on simulated data show the same tendencies as the results on Pfam data.
These data sets contain no redundant rows, and we see no deviating running
times. A clear trend line of all tree implementations can be observed on Fig. 5. It
seems Clearcut, QuickJoin and RapidNJ have almost the same asymptotic time
complexity, but with different constants. We can observe a number of jumps
on QuickJoins curve. These can be explained by the way data structures are
implemented in QuickJoin. Every time the input size reaches the next power of
two, memory consumption increases by a factor four. This affects the running
time thus creating the jumps seen in Fig. 5. The memory consumptions and
running times of RapidNJ, Clearcut and QuickTree have no sudden jumps.
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5 Conclusion

We have presented RapidNJ, a search heuristic used to speed up the search for
pairs to be joined in the neighbour-joining method. The search heuristic searches
for the same optimisation criteria as the original neighbour-joining method, but
improves on the running time by eliminating parts of the search space which
cannot contain the optimal node pair. While the worst-case running time of
RapidNJ remains O

(
n3
)
, it outperforms state of the art neighbour-joining and

relaxed neighbour-joining implementations such as QuickTree, QuickJoin and
Clearcut. Since the distance matrix used as input to neighbour-joining is typ-
ically derived from a multiple alignment, it would be interesting to investigate
the overall performance of RapidNJ when combined with efficent methods such
as [2] to obtain the distance matrix from a multiple alignment.
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Abstract. In this paper, we introduce the HashRF(p, q) algorithm for
computing RF matrices of large binary, evolutionary tree collections. The
novelty of our algorithm is that it can be used to compute arbitrarily-
sized (p × q) RF matrices without running into physical memory limi-
tations. In this paper, we explore the performance of our HashRF(p, q)
approach on 20,000 and 33,306 biological trees of 150 taxa and 567 taxa
trees, respectively, collected from a Bayesian analysis. When computing
the all-to-all RF matrix, HashRF(p, q) is up to 200 times faster than
PAUP* and around 40% faster than HashRF, one of the fastest all-to-all
RF algorithms. We show an application of our approach by clustering
large RF matrices to improve the resolution rate of consensus trees, a
popular approach used by biologists to summarize the results of their
phylogenetic analysis. Thus, our HashRF(p, q) algorithm provides scien-
tists with a fast and efficient alternative for understanding the evolution-
ary relationships among a set of trees.

Keywords: phylogenetic trees, Robinson-Foulds distance, clustering,
performance analysis.

1 Introduction

Bayesian analysis [1] is one of the most common approaches for reconstructing
an evolutionary history (or phylogeny) of a set of organisms (or taxa). Such
analysis can easily produce tens of thousands of potential, binary trees that
later have to be summarized in some way. Currently, scientists use consensus
trees to summarize the results from these multitudes of trees into a single tree.
Yet, much information is lost by summarizing the evolutionary relationships
between the trees into a single consensus tree [2], [3]. In this paper, we explore
an alternative approach, which compliments consensus trees, to help scientists
better understand the results of their phylogenetic analysis.

We developed the HashRF(p, q) algorithm as the basis for an alternative ap-
proach for understanding the relationships among a collection of t trees. The
novelty of this algorithm is that it can compute arbitrarily-sized (p× q) RF ma-
trices (see Figure 1). Moreover, it can be leveraged to minimize the memory re-
quirements of computing extremely, large RF matrices and it can be used to take
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Fig. 1. Overview of computing the RF distance matrix using the HashRF(p, q) algo-
rithm. The tree collection consists of four phylogenies: T1, T2, T3, and T4. Bipartitions
(or internal edges) in a tree are labeled Bi, where i ranges from 1 to 2. Three different
RF matrices are shown that can be produced by HashRF(p, q). HashRF(1,4) produces a
one-to-all matrix, HashRF(4,4) computes an all-to-all matrix, and HashRF(2,3) com-
putes a 2 × 3 matrix.

advantage of parallel platforms. Several software packages, such as PAUP* [4]
and Phylip [5], support computing the topological distance between phylogenetic
trees. However, these tools are only suitable for small distance matrices. Other
RF algorithms, such as Day’s algorithm [6], PGM-Hashed [7], and HashRF [8]
cannot compute arbitrarily-sized matrices. They are limited to t× t matrices.

Our results are based on our large collection of biological trees (20,000 trees
of 150 taxa and 33,306 trees of 567 taxa) obtained from a Bayesian analy-
sis. Although the benefits of our HashRF(p, q) algorithm is that it can com-
pute arbitrarily-sized matrices, we test its performance against other RF matrix
algorithms (PAUP*, PGM-Hashed, and HashRF) that compute all-to-all dis-
tance matrices. Hence, in these experiments, the p and q parameters of the
HashRF(p, q) algorithm are both set to t, the number of trees in the collec-
tion of interest. For large all-to-all matrices, the results clearly demonstrate that
HashRF(p, q) is the best approach. It is over 200 times faster than PAUP*, and
up to 40% faster than HashRF, one of the fastest algorithms for computing an
all-to-all matrix.

Once a RF distance matrix is obtained for a tree collection, there are a number
of data-mining techniques that can be used to help understand the relationship
among the trees. In this paper, we cluster the RF distance matrices in order to
improve the quality of the consensus trees, which are used to summarize large
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numbers of trees into a single phylogeny. As stated earlier, consensus trees are
traditionally used in this way. However, the disadvantage of such an approach is
potentially losing vital evolutionary relationships that are in the tree collection,
but not depicted in the consensus tree. For our tree collections, we found mixed
results. For our 150 taxa trees, clustering the resulting RF distance matrices
made a significant impact on improving the quality of the consensus tree. How-
ever, the improvement for our 567 taxa trees was minimal since the trees are
already quite similar.

Overall, HashRF(p, q) provides researchers with a technique to produce
arbitrarily-sized RF distance matrices. With our new algorithm, life scientists
have a way to apply further clustering and post-processing methods to under-
stand their large collections of phylogenetic trees.

2 Basics

2.1 Phylogenetic Trees

In a phylogenetic tree, modern organisms (or taxa) are placed at the leaves and
ancestral organisms occupy internal nodes, with the edges of the tree denoting
evolutionary relationships. Oftentimes, it is useful to represent phylogenies in
terms of their bipartitions. Removing an internal edge e from a tree separates
the taxa (or leaves) on one side from the taxa on the other. The division of the
taxa into two subsets is the non-trivial bipartition B associated with internal
edge e. (Note: all trees have trivial bipartitions denoted by external edges.)
In Figure 1, T2 has two bipartitions (or internal edges): AB|CDE represented
by B1 and ABD|CE represented by B2. An evolutionary tree is uniquely and
completely defined by its set of O(n) bipartitions.

2.2 Robinson-Foulds (RF) Distance

The Robinson-Foulds (RF) distance between two trees is the number of bipar-
titions that differ between them. Let Σ(T ) be the set of bipartitions defined by
all edges in tree T . The RF distance between trees T1 and T2 is defined as:

dRF (T1, T2) =
|Σ(T1) −Σ(T2)| + |Σ(T2) −Σ(T1)|

2
(1)

In Figure 1, consider the RF distance between trees T1 and T2. The set of
bipartitions defined for tree T1 is Σ(T1) = {AB|CDE,ABC|DE}. Σ(T2) =
{AB|CDE,ABD|CE}. The number of bipartitions appearing in T1 and not T2

(i.e., |Σ(T1) −Σ(T2)|) is 1, since {ABC|DE} does not appear in T2. Similarly,
the number of bipartitions in T2 but not in T1 is 1. Hence, dRF (T1, T2) = 1. The
largest possible RF distance between two binary trees is (n − 3), which results
in a maximum RF value of 2 in the example shown in Figure 1.

In this paper, we are interested in computing the p × q matrix, where 1 ≤
p, q ≤ t. Given two sets, S1 and S2, of input trees (where |S1| = p and |S2| = q),
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the output is a p×q matrix of RF distances. If p and q are equal to t (the number
of trees of interest), then the matrix represents the all-to-all RF distance (or t×t
RF matrix) between every pair of t trees. When p = 1 and q = t, then the matrix
represents the one-to-all distance between the trees. The all-to-all RF distance is
quite useful if one is interested in feeding the resulting t×t matrix to a clustering
algorithm. We show such an application for our collection of biological trees in
Section 6.2. One-to-all RF distances are useful for comparing a single tree (such
as the best tree found by a heuristic or a published tree) to a set of trees of
interest.

2.3 Consensus Trees

Consensus trees are used to summarize the information from the set of trees usu-
ally resulting from phylogenetic search heuristics employed by popular software
such as PAUP* [4] and MrBayes [9]. Among many different consensus methods,
the strict consensus and majority consensus trees are widely used in phylogenet-
ics. The strict consensus approach returns a tree such that the bipartitions of
the tree are only those bipartitions that occur in every input tree. On the other
hand, the majority consensus algorithm makes a consensus tree such that the
bipartitions are only those that occur in over 50% of the input trees.

Oftentimes, the resulting consensus tree is not a binary tree. If this is the
case, the consensus tree is considered to be multifurcating. We use resolution
rate to measure the percentage of binary internal edges in a phylogenetic tree.
The resolution rate is defined as the number of binary internal nodes (nodes of
degree 3) divided by (n− 3), which represents the maximum number of internal
nodes in a binary tree of n taxa. Hence, a binary tree is 100% resolved. For the
four trees in Figure 1, the majority consensus tree simply consists of a tree with
the bipartition AB|CDE, which results in a resolution rate of 75%. On the other
hand, the strict consensus trees is a star (i.e., it’s completely unresolved) and
results in a resolution rate of 0% resolved.

3 HashRF: Computing an All-to-All RF Matrix

Figure 2 provides an overview of the HashRF algorithm, which has a running
time complexity of O(nt2), where n is the number of taxa and t is the number
of trees. Each input tree, Ti, is traversed in post-order, and its bipartitions are
fed through two hash functions, h1 and h2. Hash function h1 is used to generate
the location needed for storing a bipartition in the hash table. h2 is responsible
for creating bipartition identifiers (BIDs). For each bipartition, its associated
hash table record contains its BID along with the tree index (TID) where the
bipartition originated.

3.1 Organizing Bipartitions in the Hash Table

Our h1 and h2 universal hash functions are defined as follows.

h1 (B) =
∑

biri mod m1 (2)
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Fig. 2. Overview of the HashRF algorithm. Bipartitions are from Figure 1. (a) The
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h2 (B) =
∑

bisi mod m2 (3)

m1 represents the number of entries (or locations) in the hash table. m2 represent
the largest bipartition ID (BID) that we can be given to a bipartition. That is,
instead of storing the n-bitstring, a shortened version of it (represented by the
BID) will be stored in the hash table instead. R = (r1, ..., rn) is a list of random
integers in (0, ...,m1−1), S = (s1, ..., sn) is a list of random integers in (0, ...,m2−
1), and B = (b1, ..., bn) is a bipartition represented by an n-bitstring. We can
avoid sending the n-bitstring bipartition representations to our hash functions
h1 and h2. Instead, we use an implicit bipartition representation to compute
the hash functions quickly. An implicit bipartition is simply the integer value
(instead of the n-bitstring) that provides the representation of the bipartition.

A consequence of using hash functions is that bipartitions may end up residing
in the same location in the hash table. Such an event is considered a collision.
There are three types of collisions that our hashing algorithms must resolve.
Type 0 collisions occur when the same bipartition (i.e. Bi = Bj), is shared
across the input trees. Such collisions are not serious and are a function of the
set of input trees. Type 1 collisions result from two different bipartitions Bi

and Bj (i.e., Bi �= Bj) residing in the same location in the hash table. That is,
h1(Bi) = h1(Bj). (We note that this is the standard definition of collisions in
hash table implementations.) Type 2 collisions are serious and require a restart
of the algorithm if such an event occurs. Otherwise, the resulting output will
be incorrect. Suppose that Bi �= Bj . A Type 2 collision occurs when Bi and
Bj hash to the same location in the hash table and the bipartition IDs (BIDs)
associated with them are also the same. In other words, h1(Bi) = h1(Bj) and
h2(Bi) = h2(Bj). The probability of our hash-based approach having to restart
because of a double collision among any pair of the bipartitions is O

(
1
c

)
. Since c
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can be made arbitrarily large, the probability of a restart can be made infinitely
small. In our experiments, c = 1, 000.

3.2 Computing the RF Matrix

Once all the bipartitions are organized in the hash table, then the RF distance
matrix can be calculated. For each non-empty hash table location i, we have a list
of tree index (TID) nodes for each unique bipartition ID (BID) node. Consider
the linked list of bipartitions in location 4 of the hash table in Figure 2 for
BID 27 which contains TIDs {T1}, {T2}, {T3}. The hash table shows that trees
T1, T2, and T3 share the same bipartition (ABC|DE from Figure 1). HashRF
uses a t× t dissimilarity matrix, D, to track the number of bipartitions that are
different between all tree pairs. For each tree i, its row entries are initialized to
bi, the number of bipartitions present in tree i. Hence, Di,j = bi for 0 ≤ j < t
and i �= j. Di,i = 0. In the case of binary trees, the Di,j entries are initialized to
n− 3, the maximum number of internal edges in a binary tree.

For each BID node at location l, every pair of TID nodes in the linked list
are compared to each other. Then, the counts of Di,j and Dj,i are decremented
by one. That is, we have found a common bipartition between Ti and Tj and
decrement the difference counter by one. For example, trees with BID 27 at
location 4 in the hash table shows that the pairs (T1, T2), (T1, T3), and (T2, T3)
share a bipartition. Thus, entries D1,2, D1,3, and D2,3 are decremented by one.
Once we have computed D, we can compute the RF matrix quite easily. Thus,
RF i,j = Di,j+Dj,i

2 , for every tree pair i and j.

4 Our New Approach: The HashRF(p, q) Algorithm

4.1 Motivation

Our previous work with HashRF [8] focused on designing a fast algorithm to
compute the all-to-all (or t×t) RF matrix between every pair of t trees. Consider
a collection of t binary trees. There are two distinct advantages to using our new
HashRF(p, q) approach, which extends our HashRF algorithm.

1. We can now compute a p× q matrix, where 1 ≤ p, q ≤ t.
2. There are no physical memory limitations regarding the size of a RF matrix

we can compute.

The first advantage of our HashRF(p, q) algorithm results in being able to com-
pute other types of RF matrices besides all-to-all matrices. Although all-to-all
matrices are quite useful—we show their usefulness in Section 6.2—other ma-
trix shapes are helpful. For example, one might be interested in a one-to-all RF
matrix, where p = 1 and q = t, which shows how different a single tree (e.g.,
best-known or published tree) is from a collection of trees. The other important
advantage of the HashRF(p, q) approach is that it can be used to compute ex-
tremely large matrices—especially those that are too large to fit entirely into
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physical memory. By dividing such large t× t matrices into smaller p× q chunks,
it becomes feasible to compute any RF matrix size desirable. Furthermore, if
a multi-core machine is available, then these independent blocks could be com-
puted in parallel to achieve a significant increase in performance.

4.2 HashRF(p, q) vs. HashRF

HashRF(p, q) works similarly to HashRF, which was described in Section 3. The
first major difference between the two algorithms is that HashRF(p, q) requires
as input two sets of trees, Sp and Sq, where |Sp| = p and |Sq| = q. HashRF
requires only one set of trees, S, as input and |S| = t. HashRF(p, q) requires the
sets Sp and Sq of trees since the trees in Sp will only be compared to trees in
Sq. Trees within a set will not be compared to each other.

In the HashRF(p, q) approach, we assume that p ≤ q. As a result, we place
all of bipartitions of the trees in Sq into the hash table. Once this is done, then
we process each tree Ti in the set Sp. For each bipartition B of tree Ti, we apply
our h1 and h2 hashing functions as described in Section 3. Once we determine
where bipartition B would be located (using the h1 function) in the hash table,
we compare it’s bipartition ID (using the h2 function) to those nodes that are at
that location. Suppose this location or index is l in the hash table. At location
l, for each tree Tj at location l with the same BID as tree Ti, we increment the
counter in the matrix at locations (Ti, Tj) and (Tj , Ti) by one—assuming the full
matrix is of interest and not the lower or upper triangle. We repeat the above
steps for each remaining tree in the set Sp. Afterwards, since we are interested
in the RF distance (and not similarity), we subtract n− 3 from the values since
that is the maximum RF distance for a binary tree consisting of n taxa.

In terms of running time, the HashRF approach requires O(nt2) time. For
HashRF(p, q) since we assume that p ≤ q ≤ t, then the running time is O(nq2).
Hence, if a smaller sub-matrix is of interest, it will be significantly faster to
compute than an all-to-all RF distance matrix.

5 Experimental Methodology

5.1 Biological Tree Collections

The biological trees used in this study were obtained from two recent Bayesian
analysis, which we describe below.

– 20,000 trees obtained from a Bayesian analysis of an alignment of 150 taxa
(23 desert taxa and 127 others from freshwater, marine, ands oil habitats)
with 1,651 aligned sites [10].

– 33,306 trees obtained from an analysis of a three-gene, 567 taxa (560 an-
giosperms, seven outgroups) dataset with 4,621 aligned characters, which is
one of the largest Bayesian analysis done to date [11].

In our experiments, for each number of taxa, n, we created different tree set
sizes, t, to test the scalability of the algorithms. For n = 150 and 567, the entire
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Fig. 3. The performance of the various RF matrix algorithms to compute a t×t matrix,
where t is the number of trees, our 567 taxa dataset. For HashRF(p, q), p and q are
both equal to t.

collection of trees is divided into smaller sets, where t is 128, 256, 512, . . . , 16, 384
trees. Thus, for each (n, t) pair, t trees with n taxa were randomly sampled
without replacement from the appropriate tree collection. We repeated the above
randomly sampling procedure five times in order to plot the average performance
of the RF algorithms.

5.2 RF Matrix Implementations

We obtained the source code for PGM-Hashed from the authors. We used version
4.0b10 of PAUP*. Experimental results were compared across the competing
algorithms for experimental validation. All experiments were run on an Intel
Pentium platform with 3.0GHz dual-core processors and a total of 2GB of mem-
ory. HashRF and PGM-Hashed were written in C++ and compiled with gcc
4.1.0 with the -O2 compiler option. Each plot shows the average performance
over five runs.

6 Experimental Results

6.1 HashRF(p, q) Performance

First, we consider the running time of our HashRF(p, q) algorithm against its
competitors for computing an all-to-all (or t × t) RF matrix. We also show
the performance of HashRF in comparison with HashRF(p, q). Figure 3 shows
the running time and speedup of HashRF(p, q) over its competitors on our 567
taxa tree collection. The results for our 150 taxa tree collections are similar. To
compute the speedup values, the running times of PAUP*, PGM-Hashed, and
HashRF are divided by the running time of HashRF(p, q), the algorithm of most
interest to us in our experiments. Both HashRF and HashRF(p, q) clearly outper-
form the other algorithms. PAUP* is the slowest RF matrix algorithm requiring
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5.35 hours to compute a 4, 096 × 4, 096 RF distance matrix. HashRF(p, q) only
requires 93.9 seconds for the same data set, which results in a speedup of over
200 in comparison to PAUP*. As the number of taxa is increased, the speedup
of HashRF(p, q) is increases as well, where the closest competitor PGM-Hashed
is up to two times slower than HashRF(p, q).

Figure 3 also depicts several other interesting points. Although HashRF(p, q)
was designed to compute sub-matrices, it is the best choice for computing the
all-to-all matrix when t > 2, 048 trees. HashRF is already a fast approach, but
HashRF(p, q) can improve performance by as much as 40% when t = 16, 384.
For computing smaller t× t matrices, HashRF is the preferred approach. Since
PAUP* takes over 12 hours to compute t × t matrices, when t ≥ 8, 192, we
choose to terminate the run. Finally, PGM-Hashed is unable to compute the
16, 384× 16, 384 RF matrix.

Lastly, we consider computing the all-to-all matrix of our entire collection of
trees, which is useful for the clustering of trees that is described in the next
section. In other words, we are interested in computing the 20, 000 × 20, 000
matrix and the 33, 306×33, 306 matrix of our 150 and 567 taxa trees, respectively.
Both the HashRF and HashRF(p, q) algorithms can compute the 20, 000×20, 000
matrix quite easily. However, both algorithms could not compute the all-to-all
matrix for the 33,306 trees since the algorithms ran out of memory. In such a
situation, we divided the larger matrix into 3 blocks, where each block was of size
11, 102×33, 306. We divided the input appropriately to feed to the HashRF(p, q)
algorithm (i.e., one file contained 11,102 trees and the other had 33,306 trees).
After each block was computed, we simply concatenated the results. Overall, 1
hour and 15 minutes was used to produce the 33, 306× 33, 306 matrix.

6.2 HashRF(p, q) Application: Improving Consensus Tree
Resolution Rates

Now, consider an application of the HashRF(p, q) algorithm. Given a collection
of trees returned from a Bayesian analysis, phylogenetic researchers often reduce
this information into a single consensus tree. However, one disadvantage of such
an approach is losing vital evolutionary relationships, which can be quantified
by the resolution rate of the consensus tree. The higher the resolution rate, the
more in agreement the consensus tree is with the overall collection of trees. We
explore the impact of clustering based on using RF distance matrices to improve
the resolution rates of majority and strict consensus trees.

Clustering Methodology. Using HashRF(p, q) we generated the all-to-all RF
distance matrices for our two biological collections of t trees, where t is 20,000
and 33,306 for 150 and 567 taxa trees, respectively. Next, we converted the
distance matrices into similarity matrices by subtracting the value in each cell
from n−3, the total possible number of bipartitions for n taxa. These similarity
matrices are then used as the input to CLUTO [12], which is software designed
for clustering high-dimensional datasets.

Unfortunately, we were unable to cluster the entire t× t matrices in CLUTO
since its memory requirements were too large for our platform. Although we
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have an approach that can create very large RF matrices that isn’t limited
by physical memory space, CLUTO required more memory space than we had
available. Hence, for each of our tree collections, we created smaller, random
samples of trees to cluster. These samples were created by selected 5,000 trees
at random without replacement from our collection of 20,000 and 33,306 trees.
We then created a 5, 000 × 5000 similarity matrix, which was fed to CLUTO.
The above process was repeated five times.

For our clusterings, we mostly used the default settings in CLUTO. For ex-
ample, we used repeated bipartition clustering, where the graph is partitioned
multiple times to produce the requested number of clusters. We also chose to use
the default optimization criterion which is CLUTO’s i2 function. The i2 func-
tion is meant to optimize the similarity between the data points in the clusters.
Moreover, we felt that optimizing the internal similarity of the data suited our
goals of increasing consensus resolution rates through clustering.

Clustering 150 and 567 Taxa Trees. The only default setting we changed
was specifying the number of clusters, K, to partition the 5,000 trees in the sam-
ple. The default setting for K is 10. Since the best value for K is unknown, we
set K = 2 for the 150 taxa dataset since the trees were obtained by two distinct
runs, where each run consisted of 10,000 trees. Moreover, we also wanted to min-
imize the number of different clusterings produced. If we take the resolution rate
of the entire collection 20,000 trees, the resulting majority and strict consensus
resolution rates are 85.7% and 34.0%, respectively. But, by clustering the data
into two partitions, we were able to increase the average consensus resolution
rate to 89.2% and 38.2% for majority and strict trees, respectively.

However, the 567 taxa dataset tells a different story concerning its 33,306
total trees. We initially set K = 3 for this data because it was derived from
three distinct runs, each consisting of 11,102 trees. However, setting K = 3
resulted in two clusters of around 2,500 trees and a third cluster of size two.
Hence, we repeated the experiment with K = 2. The resolution rate of the
majority and strict trees for the entire collection of 33,306 trees is 92.2% and
51.7%, respectively. By clustering, we were able to improve the average resolution
rate slightly to 92.7% for the majority trees and 53.4% for the strict trees. In
this case the clustering algorithm was unable to make significant improvements
to the consensus resolution rates since the level of similarity among the trees is
already quite high.

7 Conclusions and Future Work

Phylogenetic analysis can produce a large number of binary trees, which present
a tremendous data-mining challenge for understanding the evolutionary rela-
tionships between them. Currently, life scientists often use consensus trees to
summarize their trees. However, a lot of information regarding the evolutionary
relationships contained in the trees can be lost. One of the advantages of com-
puting a RF distance matrix to summarize the information is that it can be fed
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to a clustering algorithm to explore the relationships among the trees, which we
explore in our work.

We develop a new algorithm called HashRF(p, q) which is not limited to
computing the all-to-all (or t × t) matrices between a collection of t trees.
HashRF(p, q) can compute arbitrarily-sized p × q matrices, where 1 ≤ p, q ≤ t.
Moreover, the HashRF(p, q) approach can be used to compute very large RF
matrices, which are not bounded by the amount of physical memory available
on a user’s system. Our experimental study on large collections of Bayesian
trees shows that HashRF(p, q) is the best performing algorithm for large t × t
matrices, where the number of trees is greater than 2,048. Popular phylogenetic
software, such as PAUP*, is up to 200 times slower than HashRF(p, q). Further-
more, HashRF(p, q) is around 40% faster than our HashRF approach for large
all-to-all matrices. Such performance results suggests that we could combine the
two hash-based approaches into one.

The main motivation for computing the RF distance matrix for such a large
collection of trees is to provide researchers with input data for post-processing
techniques. In this paper, we show clustering as a method for increasing the
resolution rates of consensus trees. For the 150 taxa dataset, by creating two
clusters of trees, we were able to improve the resolution rate of the majority
and strict consensus trees by 3.5% and 4.2%, respectively. More specifically,
clustering providing us with two majority (strict) trees that had an average
resolution of 89.2% (38.2%). However, for the 567 taxa trees, clustering was not
able to improve the quality of the consensus trees as the 33,306 trees are already
quite similar.

Our work can be extended in many different directions. First, we plan to
develop a parallel algorithm that uses HashRF(p, q) to compute an arbitrarily
sized RF matrix faster. Now that we are able to obtain distance matrices of
arbitrary size, we can use them for further exploration of clustering and other
post-processing methods. Finally, we believe our approach is a good step toward
handling larger sets of trees since the goal of a phylogenetics is to reconstruct
the Tree of Life, which is estimated to contain up to 100 million taxa.
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Abstract. Whole genome association has recently demonstrated some
remarkable successes in identifying loci involved in disease. Designing
these studies involves selecting a subset of known single nucleotide poly-
morphisms (SNPs) or tag SNPs to be genotyped. The problem of choos-
ing tag SNPs is an active area of research and is usually formulated such
that the goal is to select the fewest number of tag SNPs which “cover”
the remaining SNPs where “cover” is defined by some statistical crite-
rion. Since the standard formulation of the tag SNP selection problem
is NP-hard, most algorithms for selecting tag SNPs are either heuris-
tics which do not guarantee selection of the minimal set of tag SNPs
or are exhaustive algorithms which are computationally impractical. In
this paper, we present a set of methods which guarantee discovering the
minimal set of tag SNPs, yet in practice are much faster than traditional
exhaustive algorithms. We demonstrate that our methods can be applied
to discover minimal tag sets for the entire human genome. Our method
converts the instance of the tag SNP selection problem to an instance of
the satisfiability problem, encoding the instance into conjunctive normal
form (CNF). We take advantage of the local structure inherent in hu-
man variation, as well as progress in knowledge compilation, and convert
our CNF encoding into a representation known as DNNF, from which
solutions to our original problem can be easily enumerated. We demon-
strate our methods by constructing the optimal tag set for the whole
genome and show that we significantly outperform previous exhaustive
search-based methods. We also present optimal solutions for the problem
of selecting multi-marker tags in which some SNPs are “covered” by a
pair of tag SNPs. Multi-marker tags can significantly decrease the num-
ber of tags we need to select, however discovering the minimal number of
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multi-marker tags is much more difficult. We evaluate our methods and
perform benchmark comparisons to other methods by choosing tag sets
using the HapMap data.

1 Introduction

Whole genome association is a powerful method for discovering the genetic basis
of human diseases. Recently, it has been successfully employed to reveal novel loci
correlated with risks for diseases including coronary artery disease, bipolar disor-
der, type 1 and type 2 diabetes, amongst many others[11]. A typical association
study collects genotype information at a set of single nucleotide polymorphism
(SNP) and compares the allele frequency at each SNP in a case and a control
population using a statistical test in order to determine which loci are associated
with the disease.

Even with the tremendous technological advances that have driven down the
cost of collecting SNP genotypes, collecting all known SNPs is prohibitively ex-
pensive. Genetic association studies take advantage of the fact that genotypes at
neighboring SNPs are often in linkage disequilibrium (LD) or are correlated with
each other. This correlation allows for “indirect association” where a SNP which
is associated with the disease is detected not by collecting genotypes at the SNP
directly, but instead by collecting genotypes at a neighboring “tag” SNP or SNP
that is correlated with the associated SNP. The availability of reference data sets
such as those provided by the HapMap project[10] allow for us to measure the
linkage disequilibrium patterns between SNPs and use this information when de-
termining which SNPs to select as tags. Tag SNP selection is a central problem in
designing association studies and has been extensively studied [27].

Research on the tag SNP selection problem can be roughly split into two
categories: the statistical criteria used for selecting tag SNPs and the algorithms
for choosing a tag set given this statistical criteria. Many statistical criteria have
been proposed for tag SNP selection [27]. The most popular criterion considers
the square correlation coefficient r2 between SNPs. Under this formulation of
the tag SNP selection problem the goal is to choose a subset of the SNPs as tags
such that each SNP not selected in the tag set has an r2 value with a tag SNP
above a minimal threshold. This problem is commonly represented as a graph
where each SNP is represented as a node and an edge connects two nodes if their
corresponding SNPs have a correlation above the threshold. A set of tags which
covers the remaining tag SNPs corresponds to a vertex cover in this graph. This
problem is NP-complete [1] and it was widely believed that we cannot obtain
the minimal solutions to this problem for the whole genome[27]. Relatively few
algorithmic approaches have been proposed for this problem with the greedy
algorithm being the most widely used[7]. While the greedy approach has been
used to construct the current generation of commercial products used for whole
genome association studies, the greedy algorithm provides no guarantees that the
chosen tag set has the minimal number of tag SNPs necessary to cover the region.
Relatively few approaches have been presented to obtaining minimal tag sets
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and these approaches reduce the problem in order to make it computationally
feasible. Halldorson et al. [5] restrict LD patterns to a window and FESTA [24]
solves the problem by partitioning the SNPs into precincts which do not have
any linked SNPs in them and then exhaustively enumerating the solutions within
the precinct.

In this paper we present a novel approach to solving the tag SNP selection
problem which can discover all minimal solutions and can scale to the whole
genome. Our method encodes the instance of the tag SNP selection problem
as an instance of the satisfiability (SAT) problem. Here, our SAT instances are
clauses in conjunctive normal form (CNF) where a variable assigned to true
corresponds to the inclusion of a SNP into the tag set. We take advantage of
the local structure inherent in human variation, as well as progress in knowledge
compilation, and convert our CNF encoding into a representation known as
DNNF, from which solutions to our original problem can be easily enumerated.
A satisfying assignment of variables to truth values in the SAT instance yields
a valid solution to the tagging problem (and vice versa). As we shall clarify, a
“minimal” satisfying assignment yields a minimal set of tags.

We compare the results of our method on the single SNP r2 tag SNP selection
problem to FESTA [24] and Halldorson’s method [5] over the ENCODE [10] data
set. We also demonstrate that our methods scales to the whole genome HapMap
data. Consistent with previous studies, minimal solutions for the tag SNP selec-
tion method use only slightly less tags than greedy solutions[24]. One advantage
of our framework is that we can characterize the entire set of optimal solutions,
but in a tractable form that allows for flexible designs. Another advantage is
that our approach extends to more challenging variants of the tag SNP selec-
tion problem where we are selecting mutli-marker tags in which a SNP can be
“covered” by a pair of tags. Multi-marker tags have been shown to significantly
increase the power of association studies[23,30].

2 Methods

We present methods for choosing the minimal number of tags SNP for several
variations of the tagging problem. First we show how to solve the single SNP r2

tagging problem in which we search for a minimum set of tag SNPs which cover
the remaining SNPs in a region of the genome with an r2 above some minimum
threshold. Second, we present a method for combining our optimal solutions in
local regions to an optimal solution for the entire genome. Third, we extend our
solution to multi-marker tags or tags which combine two or more SNPs. The use
of multi-marker tags can significantly reduce the number of tags which need to
be collected in order to cover a region, but the optimization procedure is much
more difficult.

2.1 Single SNP r2 Tagging

Let S = {si}n
i=1 be a set of SNPs. We say SNP si “covers” SNP sj if their

correlation coefficient r2, exceeds some threshold r2min. If T ′ ⊆ S, and ∀sj ∈



138 A. Choi et al.

(a)

r2
ij s1 s2 s3 s4 s5 s6

s1 1.0 0.9 0.5 0.4 0.2 0.4
s2 0.9 1.0 0.9 0.5 0.3 0.2
s3 0.5 0.9 1.0 0.9 0.8 0.1
s4 0.4 0.5 0.9 1.0 0.9 0.8
s5 0.2 0.3 0.8 0.9 1.0 0.5
s6 0.4 0.2 0.1 0.8 0.5 1.0

(b) (c)

Fig. 1. (a) Single SNP r2 table (b) Graph of cover problem (c) NNF equivalent to CNF

S, ∃si ∈ T ′ such that r2ij ≥ r2min, we call T ′ a valid cover of S. Our goal is to
select the smallest set T ′ ⊆ S that is a valid cover of S.

Consider the example in Figure 1, where we have 6 SNPs s1, . . . , s6, and the
pairwise r2 values described in the table in Figure 1(a). Suppose that we have
the threshold r2min = 0.8. We can represent the SNPs as the graph shown in
Figure 1(b) where an edge denotes an r2 above the minimum threshold. The
standard greedy algorithm [7,18] picks tag SNPs by repeatedly selecting the
SNP with the largest number of uncovered neighbors. We can easily see that
there are two optimal solutions, T = {s4, s2} and T = {s4, s1}. Note that one
greedy solution will select SNP s3 in the first step resulting in a non-optimal
solution T = {s3, s1, s6}. Our approach to the tag SNP selection problem will
characterize all optimal solutions in a compact directed acyclic graph, which in
this case happens to be a tree in the example of Figure 1(c).

We shall reduce the problem of identifying a valid selection of SNPs to the prob-
lem of identifying a satisfying assignment to a propositional sentence in conjunc-
tive normal form (CNF). In particular, we want a sentence in CNF where satisfying
assignments correspond to a valid selection of SNPs. We create a literal for every
SNP and a clause for every SNP consisting of literals that can cover that SNP.

Given a threshold r2min, consider a sentence in CNF: Φ = φ1 ∧ · · · ∧ φn with
as many clauses φi as there are SNPs si, where each clause is of the form:

φi =
∨

r2
ij≥r2

min

sj

Each SNP sj ∈ S is a positive literal in the CNF sentence Φ, and appears in
clause φi if and only if SNP sj can cover SNP si. A valid selection T ′ of SNPs
then corresponds precisely to a satisfying assignment of Φ.

In order to find a minimally valid selection T of SNPs, we seek a minimum
cardinality model of our propositional sentence, where a minimum cardinality
model is a satisfying assignment with a minimal number of positive literals.

Consider the example in Figure 1 with six SNPs s1, . . . , s6. Given the threshold
r2min = 0.8 we have the following CNF formula (s1∨s2)∧(s1∨s2∨s3)∧(s2∨s3∨
s4∨s5)∧(s3∨s4∨s5∨s6)∧(s3∨s4∨s5)∧(s4∨s6) We have two minimum cardinality
models, (¬s1, s2,¬s3, s4,¬s5,¬s6) and (s1,¬s2,¬s3, s4,¬s5,¬s6), corresponding
to our two minimally valid selection of SNPs.
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Not surprisingly, identifying a minimum cardinality model for a given sen-
tence in CNF is also an NP–hard problem. Our approach is based on converting
our sentence Φ in CNF into a logically equivalent sentence Δ in decomposable
negation normal form (DNNF) [12,13,15,16]. DNNF is a logical representation
that allows certain queries, which are in general intractable, to be computed in
time polynomial in the size of the DNNF sentence. For example, if a conversion
from CNF to DNNF does indeed result in a sentence of manageable size, we can
efficiently test whether the original sentence is satisfiable, count and enumerate
its models, and identify another sentence in DNNF that characterizes all its min-
imum cardinality models. By enumerating the models of the resulting sentence,
we can enumerate all of the minimally valid selections of SNPs. In general, there
are no guarantees that a CNF can be converted to a DNNF of reasonable size,
but we demonstrate that for the tag SNP selection problem, due to the inherent
local structure of the problem, our approach is tractable.

This conversion is performed here by the c2d compiler, which compiles CNF
instances into DNNF [6].1 The c2d compiler has already been successfully em-
ployed in a number of other applications, serving as a backbone reasoning system
in support of higher level tasks. For example, c2d was used as the backbone for
planning systems [4,20], for diagnostic systems [19,3,22,2], for probabilistic rea-
soning [28,9,25,8], and for query rewrites in databases [29]. In each one of these
applications, high level reasoning problems were encoded into CNF, which was
compiled into DNNF by c2d. The resulting compilation was then used to solve
the original problem by posing polytime queries to it.

Decomposable negation normal form. A negation normal form (NNF) is
a rooted and directed acyclic graph in which each leaf node is labeled either by
a literal (say i for a positive literal, and −i for a negative literal), or simply by
true or false. Each internal node is labeled with a conjunction (∧ or AND) or
a disjunction (∨ or OR); Figure 1(c) depicts an example. A negation normal
form is decomposable (DNNF) if it satisfies the Decomposability property: for
each conjunction in the NNF, the conjuncts do not share variables. The NNF in
Figure 1(c) is also in DNNF.

If we are able to efficiently compile a CNF instance into DNNF, many queries
are straightforward to compute [12]. For example, we can test if a DNNF sentence
is satisfiable by simply traversing the graph bottom-up, while visiting children
before parents. If a leaf node is labeled by a literal (i or −i), or true, then it
is satisfiable; otherwise, it is unsatisfiable (labeled with false). A subsentence
rooted at an OR node is satisfiable iff any of its children are satisfiable. For an
AND node, it is satisfiable iff all of its children are satisfiable (since AND nodes
are decomposable). We can compute the minimum cardinality of a sentence and
enumerate its models in a similar way [12,17].

Before we proceed to describe how to compile a sentence in CNF into DNNF,
consider the conditioning of a sentence Δ on an instantiation α, denoted Δ | α.
This operation yields a sentence that can be obtained by replacing every literal in
1

c2d further enforces the determinism property, and more specifically, compiles CNF
instances into d-DNNF [16].
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s1 ∨ s2 ∨ s3s1 ∨ s2

s2 ∨ s3 ∨ s4 ∨ s5 s3 ∨ s4 ∨ s5 ∨ s6

s4 ∨ s6s3 ∨ s4 ∨ s5

CUTSET:

{s3, s4, s5}
CONTEXT:

{}CONTEXT:

{s3, s4, s5}
CUTSET:

{s2}

CUTSET:

{s1}
CONTEXT:

{s2, s3,}

CONTEXT:

{s3, s4, s5}
CUTSET:

{s6}

CONTEXT:

{s3, s4, s5,s6}

CUTSET:

{}

s1 ∨ s2 ∨ s3s1 ∨ s2

s2 ∨ s3 ∨ s4 ∨ s5 s3 ∨ s4 ∨ s5 ∨ s6

s4 ∨ s6s3 ∨ s4 ∨ s5

CUTSET:

{s3, s4, s5}
CONTEXT:

{}CONTEXT:

{s3, s4, s5}
CUTSET:

{s2}

CUTSET:

{s1}
CONTEXT:

{s2, s3,}

CONTEXT:

{s3, s4, s5}
CUTSET:

{s6}

CONTEXT:

{s3, s4, s5,s6}

CUTSET:

{}

Fig. 2. A d-tree for the CNF used for the example in Figure 1. Internal nodes are
labeled with their contexts and cutsets.

Δ with true (respectively, false) if it is consistent (inconsistent) with instantiation
α. For example, conditioning the DNNF (¬a∧¬b)∨ (b∧ c) on instantiation b∧ d
gives (¬a ∧ false) ∨ (true ∧ c). Note that DNNF is closed under conditioning, i.e.,
conditioning a DNNFΔ on an instantiationα results in another DNNF. Moreover,
the resulting sentence Δ | α does not mention variables assigned by α.

Consider the following theorem, due to [12], which motivates the compilation
procedure underlying c2d.

Theorem 1 (Case Analysis). Let Δ1 and Δ2 be two sentences in DNNF, and
let Δ be the sentence

∨
α(Δ1 | α) ∧ (Δ2 | α) ∧ α, where α are instantiations of

variables mentioned in both Δ1 and Δ2. Then Δ is in DNNF, and is equivalent
to Δ1 ∧Δ2.

This theorem suggests a recursive algorithm DNNF1(Φ) that converts a sentence
Φ in CNF into a sentence Δ in DNNF:

1. If Φ contains a single clause φ, return DNNF1(Φ) ← φ. Note that a clause is
vacuously decomposable.

2. Otherwise, return

DNNF1(Φ) ←
∨

α

DNNF1(Φ1 | α) ∧ DNNF1(Φ2 | α) ∧ α,

where Φ1 and Φ2 is a partitioning of clauses in Φ, and α is an instantiation
of the variables mentioned in both Φ1 and Φ2.

We can see that this procedure gives us the decomposability property, but at the
expense of increasing the size of the original sentence. This increase is incurred
primarily due to the case analysis performed, and the extent of this increase is
sensitive to the way we decide to partition the clauses of the input sentence Φ. In
particular, we would want to minimize the number of common variables between
Φ1 and Φ2, as the complexity of case analysis is exponential in this number.

Partitioning can be guided by decomposition trees, or simply d-trees [12].

Definition 1. A d-tree T for a CNF Φ is a binary tree whose leaves correspond
to the clauses in Φ.
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An example d-tree for the CNF used for the example in Figure 1 is shown
in Figure 2. Intuitively, the above compilation procedure traverses the d-tree,
starting from the root, where case analysis is performed based on how the d-
tree partitions the clauses of the CNF Φ. In particular, each interior node t
is associated with the set of clauses that appear below it, and the partition is
determined by the clauses of t’s left and right children.

As we can see in Figure 2, each internal node is labeled with two variable sets:
the cutset and the context. At a given node t, the cutset tells our compilation
algorithm which variables to perform case analysis on. The context tells us those
variables that appear in both of t’s children, but have already been instantiated
for case analysis by an ancestor. An instantiation α of the context variables can
then be used as a key for a cache that stores the results of compiling the subset of
clauses Φ | α. When a node is revisited with the same context, then the algorithm
can simply return the DNNF sentence Δ | α already computed. For example, at
the root of the tree, the cutset contains {s3, s4, s5} since those variables appear
in both children. If we follow the left branch twice, the context is now {s2, s3},
which was instantiated by the root and its left children. Note that this node
will be visited multiple times for different instantiations of {s4, s5}, but only
different instantiations of the context yield different subproblems. Thus, when
this node is revisited with the same context instantiation, we simply fetch the
result from the cache. It is this subformula re-use that allows compilation to
moderate the exponential growth of the formula caused by case analysis.2 The
c2d compiler, while based on this approach, employs more advanced techniques
to further improve on the efficiency of compilation [14].

Scaling to Whole Genome Tagging. The c2d compiler is capable of com-
puting minimal tag sets, for several thousands of SNPs. Unfortunately, memory
becomes an issue when we try to compile even larger regions of the genome. To
encode the entire genome as a CNF, however, we must use 3.8 million literals and
3.8 million clauses. Clearly, we need new techniques to scale to this problem size.
Roughly, our approach is to compile sufficiently small regions of the genome into
DNNF, which are then “stitched” together to construct a DNNF for the entire
genome. Due to space limitations, we omit the detail of this approach.

2.2 Multi-marker SNP Tagging

Recent work has shown that using statistical tests based on haplotypes over
multiple SNPs improves the power of whole genome association studies[23,30].
In the context of tagging, this permits combinations of tag SNPs (multi-marker
tags) to cover a SNP, allowing for a smaller set of tags to cover the SNPs.

In this situation, an even smaller set T ′ may be a valid cover of SNPs.
Again, we reduce the problem of identifying a valid set of SNPs to satisfiability.

Given a threshold r2min, we now have two classes of clauses Φ and Ψ . Clauses
Φ, as before, enforce constraints that require each SNP in S to be covered:
2 In particular, the complexity of compilation can be bounded in terms of the size of

the context and the cutset [12].
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Φ = φ1 ∧ · · · ∧ φn, where there are as many clauses φi as there are SNPs si, but
where each clause is now of the form:

φi =
( ∨

r2
j→i≥r2

min

sj

)
∨
( ∨

r2
j,k→i≥r2

min

pjk

)
.

In this case, either a positive literal sj representing SNP sj or a positive literal
pjk representing a SNP pair (sj , sk) can also satisfy clause φi and cover SNP si.

Clauses Ψ enforce the constraints that if a pair literal pjk is true, then both
sj and sk are true (i.e., in the tag set):

Ψ =
∧

r2
j,k→i≥r2

min

(pjk ≡ sj ∧ sk)

where pjk ≡ sj ∧ sk are equivalence constraints that ensure that pjk is selected
iff the corresponding pair (sj , sk) is selected. In clausal form, this equivalence
constraint is given by three clauses: ¬pjk ∨ sj ,¬pjk ∨ sk and pjk ∨ ¬sj ∨ ¬sk.

Consider the example from the previous section with six SNPs s1, . . . , s6.
Suppose that the pair (s1, s3) can cover s6, and that r21,3→6 = 0.9. Given the
threshold r2min = 0.8, we gain a third optimal solution s1, s3, to go with the two
solutions s4, s2 and s4, s1 from before. Encoding the problem, we have the fol-
lowing formula: (s1 ∨ s2)∧ (s1 ∨ s2 ∨ s3)∧ (s2 ∨ s3 ∨ s4 ∨ s5)∧ (s3 ∨ s4 ∨ s5 ∨ s6)∧
(s3 ∨ s4 ∨ s5) ∧ (s4 ∨ s6 ∨ p13) ∧ (p13 ≡ s1 ∧ s3). We again want a minimum car-
dinality assignment, but minimizing only the number of positive si literals. We
can introduce constraints pjk ≡ ¬qjk to cancel out the contribution of the pjk’s
to the cardinality with the qjk’s; we can then convert to DNNF and minimize,
as before.3

3 Results

We downloaded the complete HapMap build 22 data including all ENCODE
regions. These data are genotypes on 270 individuals in 4 populations and over
3.8 million SNPs. They represent the most complete survey of genotype data
currently available and are used as our test data sets. The 10 ENCODE regions
span 5 MB and are believed to have complete ascertainment for SNPs with
frequency greater than 5%. They are commonly used to estimate the performance
of association study design methods and tag SNP selection methods since there
are still many unknown common SNPs in the rest of the genome.

3.1 ENCODE Single SNP r2 Comparison

We compared the performance of our method to the two other optimal methods
as well as the non-optimal greedy algorithm over each of the ENCODE regions
3 We can also existentially quantify out the pjk literals; this operation is supported

by c2d [6].
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Region ns Greedy Halldorson(W=15) FESTA(L=107) Optimal

ENm010 567 159 243(12m) 157(0m) 157
ENm013 755 93 309(23m) 90(0m) 90
ENm014 914 164 393(33m) 157(0m) 157
ENr112 927 180 340(34m) 173(34m) 173
ENr113 1072 179 395(46m) 176(274m) 176
ENr123 937 174 463(35m) 172(0m) 172
ENr131 1041 228 414(44m) 221(0m) 221
ENr213 659 122 248(17m) 122(0m) 122
ENr232 533 142 181(11m) 140(36m) 140
ENr321 599 132 202(14m) 131(0m) 131

Fig. 3. Comparison of several tagging algorithms over the Encode regions in the CEU
population. ns is the number of SNPs in the region. The table shows the tag set size for
each of the methods various methods (smaller is better). Running times are given in
parentheses in minutes. All running times for Optimal are less than one minute (0m).

in each of the populations. Haldorsson et al.[5] restricts the maximum length of
correlations and uses a dynamic programming procedure which guarantees to
find an optimal solution. Given a window size W , Haldorsson et al.[5] examines
all 2W possible choices of tag SNPs in the window and then uses dynamic pro-
gramming to extend this to a longer region. FESTA [24] extends the standard
greedy algorithm in a natural way. Given an r2 threshold, FESTA partitions the
SNPs into precincts where SNPs are correlated only within the precinct. For a
small precinct FESTA enumerates all possible tag sets in search of the minimal
tag set. For a larger precinct, FESTA applies a hybrid exhaustive enumeration
and greedy algorithm by first selecting some SNPs using exhaustive enumeration
and then applying greedy algorithm. The user defines a threshold L so that the
hybrid method is applied when

(
n
k

)
> L where n is the number of SNPs in a

precinct and k is the number of tags that need to be selected from the precinct.
We use L = 107 in our experiments.

The results are presented in table 3. Surprisingly, the Halldorson et al.[5]
method, at the maximum limit of what is computationally feasible (W = 15)
performs worse than the simple greedy algorithm and is much slower than than
both FESTA and our approach. FESTA and our approach both recover optimal
solutions for the ENCODE regions, however, FESTA ends up spending a very
large amount of computational time in very large precincts, taking several hours
to complete some of the data sets while our approach requires less than a minute.

3.2 Whole Genome Single SNP r2

We ran our approach and the greedy approach over the entire genome wide
HapMap data for the CEU population in order to find the minimal tag set to
cover all SNPs with MAF ≥ 0.05 and r2 ≥ 0.8. Greedy resulted in 472729
tag SNPs while our approach needed only 468967 over the entire 1692323 SNP
data set. This modest decrease shows that in the single SNP r2 tag SNP selection
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approach, greedy search performs almost as well as optimal search. Our program
required less than one day on a single CPU to run over the whole genome. Once
we compile into DNNF, which is done just once, we can perform a variety of
queries and operations on the set of all optimal solutions [16], allowing for flexible
design or optimization on a secondary criteria. For example, we can efficiently
obtain the set of optimal solutions that contain some SNPs and do not contain
other SNPs.

3.3 Mutli-marker Tag SNP Selection ENCODE Results

Although for the single SNP r2 tag SNP selection problem, the greedy algorithm
achieves a solution close to the optimal solution, this is not the case for multi-
marker tag SNP selection. We compare our method to the popular Tagger [18]
method over the Encode region ENm010 in the CEU population. This regions
contains 567 SNPs with minor allele frequency (MAF) greater than 0.05. Tagger
first computes a single SNP tag set using greedy search resulting in 159 tag SNPs
and then uses a “roll back” procedure in which a SNP si is removed from the
tag set if another pair of SNPs in the tag set cover si with r2 = 1.0. That is,
redundant SNPs are removed from the tag set. Tagger’s multi-marker approach
does reduce the number of SNPs required to cover an ENCODE region to 141
SNPs compared to 157 optimal single SNP tags, but the reduction is far from
optimal. Our method requires only 72 SNPs to cover the ENCODE region a 54%
and 40% reduction over single SNP tags and the Tagger’s multi-marker tags.

4 Discussion

We have presented a novel method for solving a variety of tag SNP selection prob-
lems which guarantee a solution the the minimal number of tag SNPs. Since the
problem is NP-hard, our methods provide no guarantees on the running time of
the algorithms. However, we have demonstrated that in practice, our approach
is very efficient and much faster than previously proposed exhaustive methods.
Improvements over the classic single SNP r2 tagging problem are modest com-
pared to greedy search. The FESTA [24] algorithm also achieves these results
over the ENCODE regions, but is not guaranteed to discover a minimal tag set in
the general case. We outperform FESTA in terms of running time. In addition,
our approach allows us to characterize all optimal solutions as opposed to just
those containing perfectly linked SNPs. This permits flexible tag set choice that
can be further optimized over secondary criteria. This method is also extensible
to other measures of SNP coverage besides r2.

Recent work has shown the multi-marker methods are more powerful than
single SNP techniques in the context of association studies. While a variety of
multi-marker statistical tests exist, the current optimal tagging methods such
as FESTA are not able to tag for multiple markers efficiently. Our SAT based
method is able to find optimal multi-marker tags for pairs of SNPs over the
dense ENCODE regions. The gain for optimal tagging over greedy search in this



Efficient Genome Wide Tagging by Reduction to SAT 145

context is significantly better than for the single SNP with improvement over
the popular Tagger [18] method reaching 40%. Since the cost of custom genotype
arrays remains high, this tool is valuable for follow up association studies. That
is, once genome wide results have been found, further genotyping must be done
to localize the region containing the causal variant. Intelligent choice of tag sets
for follow up studies can greatly improve their power and until now, multi-marker
tagging for follow up has been non-optimal.

In addition to r2, other factors that influence power are the minor allele fre-
quency of the causal variant and the strength of the effect of a variant on disease
risk. We can also formulate a variant of the tag SNP selection problem in which the
goal is to optimize the statistical power given that we are collecting a fixed num-
ber of tag SNPs. For this problem, formulating the problem as a SAT problem is
difficult because the constraint of using a fixed number of tags creates long range
dependencies which complicate the decomposition of the problem into a DNNF. A
typical approach to solve problems with such constraints is to formulate the prob-
lem as a Max-SAT problem where each clause has a weight and we are trying to
satisfy the largest number of clauses. In future work, we will explore formulating
the maximum power tag SNP selection problem as a Max-SAT problem in order
to choose tags which optimally maximize the statistical power.

Our method and whole genome optimal data sets are available for use via
webserver at http://whap.cs.ucla.edu.
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Abstract. We study the problem of selecting the minimal tiling path (MTP) from
a set of clones arranged in a physical map. We formulate the constraints of the
MTP problem in a graph theoretical framework, and we derive an optimization
problem that is solved via integer linear programming. Experimental results show
that when we compare our algorithm to the commonly used software FPC, the
MTP produced by our method covers a higher portion of the genome, even us-
ing a smaller number of MTP clones. These results suggest that if one would
employ the MTP produced by our method instead of FPC’s in a clone-by-clone
sequencing project, one would reduce by about 12% the sequencing cost.

1 Introduction

A physical map is a linear ordering of a set of clones encompassing one or more chro-
mosomes. Physical maps can be generated by first digesting clones with restriction en-
zymes and then detecting the clone overlaps by matching the lengths of the fragments
produced by digestion. A minimum-cardinality set of overlapping clones that spans the
region represented by the physical map is called minimal tiling path (MTP).

The problem of determining a good set of MTP clones is crucial step of several
genome sequencing projects. For instance, in the sequencing protocol called clone-
by-clone, first a physical map is constructed, then the MTP is computed and finally,
the clones in the MTP are sequenced one by one [9]. The clone-by-clone sequencing
method has been used to sequence several genomes including A. thaliana [15] and H.
sapiens [12] among others. Also, in several recent whole-genome shotgun sequencing
projects, the MTP obtained from a physical map has been employed to validate and
improve the quality of sequence assembly [23]. This validation step has been used, for
example in the assembly of M. musculus [10], R. norvegicus [13], and G. gallus [18].

With the introduction of next-generation sequencing machines (454, Solexa�Illumina,
and ABI SOLiD) we expect the MTP computation to become an essential step in de
novo sequencing projects of eukaryotic genomes. Next-gen sequencing technology pro-
duces massive amount of very short reads (about 250bps for 454, 35bps for Illumina and
SOLiD) [4] and therefore the de novo assembly of the whole eukaryotic genomes is ex-
tremely challenging [17]. Arguably, the only feasible method at this time is a clone-by-
clone approach, where each clone in the MTP is sequenced using next-gen technology,
and the assembly is resolved separately on each clone (see [17,21,25] and references
therein).

K.A. Crandall and J. Lagergren (Eds.): WABI 2008, LNBI 5251, pp. 148–161, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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If the exact locations of all clones in the physical map were known, computing its
MTP would be straightforward; simply select the set of clones in the shortest path from
the leftmost clone to the rightmost clone in the interval graph representing all the clones.
This, however, is not a realistic solution. The noise in the fingerprinting data makes it
impossible to build a perfect map. As a consequence, determining the minimal tiling
path becomes a challenging computational problem. On one hand, a method that tends
to select more clones as MTP might include many redundant clones (i.e., clones that
do not provide additional coverage) and therefore it would waste time and money later
in sequencing. On the other hand, an approach that tries to reduce the number of MTP
clones may introduce gaps between the clones in some of the contigs, and thus reduce
the coverage.

Although the problem of computing MTP has been studied extensively in the liter-
ature (see e.g. [22,15]), in practice there is only commonly used software tool, namely
FingerPrinted Contigs (FPC) [7]. FPC provides three methods to compute an MTP, but
only one uses solely restriction fingerprint data (hereafter called FPC-MTP). FPC-MTP
computes the approximate overlap between clones in the contig and validates each over-
lap by using three extra clones, a spanner that verifies the shared fragments of the pair
and two flanking clones that extend to the left and right of the pair and confirm frag-
ments in the pair that are not confirmed by the spanner clone. Once the verification of
the overlapping fragments between each clone pair is completed, a shortest path algo-
rithm is used to find the minimal tiling path [2].

FPC-MTP’s algorithm is quite good, but can be improved; our experimental results
show that FPC-MTP is significantly distant from the optimal1 MTP. In general, FPC-MTP
selects fewer clones than necessary which in turns reduces theoverall coverage.By chang-
ing parameters one can increase the coverage, but this comes at the cost of introducing
many redundant clones. This limitation of FPC-MTP can be attributed to the fact that it
checks theclonepositionsasan overall constraintwhencomputing theMTP[2].However,
the positions of clones in contigs are known to be not very reliable [16].

Our contribution. We propose a new algorithm, called FMTP, that computes the MTP
of a physical map based purely on restriction fingerprint data (and the contigs). In other
words, our algorithm completely ignores the ordering of clones obtained by the physical
map algorithm.

FMTP first computes a preliminary MTP by selecting the smallest set of clones that
covers the genomic region that is covered by all clones in the contig. The problem
of computing the preliminary MTP set is formulated in a combinatorial optimization
framework as an Integer Linear Program (ILP). The preliminary MTP set may contain
redundant clones. In the second phase, FMTP orders the clones in the preliminary MTP
and computes the final MTP by using a shortest path algorithm.

We carried out an extensive set of experiments on the physical map of rice and barley.
For the former dataset, the actual coordinates for the clones are known and therefore we
could measure the accuracy of our algorithm. The experimental results show that the set
of MTP clones computed by FMTP on the physical map for rice has higher coverage
than the one produced by FPC (using approximately the same number of clones overall).
This suggests that a larger portion of the genome could be obtained at the same cost when

1 The optimal MTP is the one that we could compute if we knew the coordinates of all the clones.
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FMTP is used instead of FPC. Our experimental results also show that if one fixes a target
coverage, FMTP produces MTPs with about 12% fewer clones than MTPs produced by
FPC. This suggests that our tool could reduce sequencing costs by about 12%.

2 Basic Concepts

We use the term clone fragment (or fragment) to indicate a portion of a clone obtained
by digesting it with a restriction enzyme. Let b(u) be the size for clone fragment u. We
say that two clone fragments u and v match if their corresponding sizes are within the
tolerance T , i.e., if �b(u) � b(v)� � T . The tolerance parameter depends on the finger-
printing method, thus it should match the one used in the construction of the physical
map [19]. Given a fragment u, let N(u) be the name of the clone which u belongs to.
This notion can be extended to a set of fragments as follows. Given a set of fragments
U, N(U) represents the set of all clones that contain at least one fragment in U.

We declare two clones ci and c j to be overlapping if their Sulston score S is lower
than or equal to a user-defined cuto� threshold C, i.e., S (ci� c j) � C. The Sulston score
measures the probability that two clones share a given number of restriction fragments
by chance according to a binomial probability distribution [20]. FPC has an analogous
cuto� parameter to build the physical map [19].

A matching fragment graph (MFG) is a weighted undirected graph G � (V� E) in
which V represents the set of all clone fragments and an edge (u� v) � E exists if frag-
ment u matches fragment v. The weight on the edge (u� v) � E is defined as the neg-
ative logarithm of S (N(u)� N(v)). In the ideal MFG, each connected component of the
matching fragment graph G should correspond to a unique region in the target genome.
Unfortunately, this in not realistic due to noise in the fingerprinting data and falsely
matching fragments.

Given a connected component U � V of G, we call N(U) a connected component
cloneset (orcloneset if it is clear from thecontext).Wesay thatacloneccoversaconnected
component U of G if it belongs to the corresponding cloneset, i.e., c � N(U). Given an
MFGG, the minimal tiling path ofG is the smallest set Mof clones that cover all connected
components of G, i.e., M � N(U) � � for all connected components U of G.

A toy example of an MFG is shown in Figure 1-LEFT. Each node is labeled as
�clone name�-�fragment size�-�copy number of the fragment�. Clones �, �, �, �,
and � are overlapping. Shared fragments are represented by the connected component of
the MFG (namely, fragments of approximate size of 1870, 1805, 1255, and 1400 bases
respectively). For example, given the connected component U � �L-1803-1, M-1807-1,
N-1802-1	, the cloneset N(U) is ��,�,�	. The minimum tiling path is ��,�	 because by
selecting these two clones we cover all the connected components of the graph.

3 Methods

FMTP consists of two modules, namely MTP-ILP and MTP-MST. The module MTP-
ILP computes a preliminary MTP by solving an integer linear program. The objective of
MTP-ILP is to cover all connected components in the MFG using the smallest possible
set of clones. The module MTP-MST computes the final MTP based on an overlap
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Fig. 1. (LEFT) An example of a matching fragment graph. Each node is a clone fragment and it
is labeled as the �clone name�-�fragment size�-�copy number of the fragment�. Each edge is
weighted by the negative logarithm of the Sulston score between the clones that contain the inci-
dent node fragments. (RIGHT) Overlap graph of clones in this MFG. There is an edge between
two clones if their fragments are together in at least one connected component in the MFG.

graph. The goal of MTP-MST is first to order the clones in the preliminary MTP and
then run a shortest path algorithm to compute the final MTP. In both modules, an MFG
is constructed by performing the steps described below.

3.1 Constructing the MFG

For each contig, FMTP performs a pairwise alignment between all clones in that contig
based on their restriction fingerprint data. The alignment produces the initial MFG.
Then, some of the false positive edges (i.e. falsely matched fragments) are removed and
the final MFG is constructed, as described below in more details.

Preprocessing: burying clones. The purpose of this preprocessing step is to reduce
the problem size by discarding clones that are almost completely contained in another
clone. A clone is defined buried if B% or more of its fragments are matching fragments
of another clone, where B is a user-defined parameter. According to our experiments, B
should be at least 80 to avoid false positive buried clones. If two clones can be buried
into each other, the smaller of the two (i.e., the one with fewer fragments) is buried into
the other one. FPC also buries clones during the process of building the physical map,
but it does not discard them during MTP computation.

Building the preliminary MFG. First, we align the fingerprint data for each pair of
overlapping clones. For each clone pair (ci� c j) for which S (ci� c j) � C, we build a
bipartite graph Gi� j � (Li 
 R j� Ei� j), where Li and R j consist of the fragments of ci and
c j, respectively, and Ei� j � �(u� v)�u � Li� v � R j such that �b(u) � b(v)� � T 	.

In order to align clones ci and c j, we search for the maximum bipartite matching
in Gi� j. The matching of maximum cardinality is found by solving max flow on the
corresponding flow network [6]. Let Mi� j be set of matched edges.

For all clone pairs ci and c j for which S (ci� c j) � C, the matching edges in Mi� j are
used to create the (preliminary) matching fragment graph G. Specifically, for each edge
(u� v) � Mi� j, nodes u, v and edge (u� v) are added to G (unless they have been already
added). The weight of (u� v) is set to be the negative logarithm of the Sulston score
between clone ci and clone c j.

The objective of the bipartite matching is to attempt to group together clone frag-
ments that are located at the same location on the genome. Because of the noise in the
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fingerprint data, some of the matched fragments might not represent the same region in
the target genome. In the following steps, we try to eliminate as many false matches as
possible.

MFG pruning. In this step, some of the components of G that might represent more
than one unique region in the target genome are split. Specifically, we examine all the
connected components of G and mark the ones that satisfy at least one of the following
conditions as candidates.

1. Extra fragment: The connected component contains multiple fragments of a clone.
2. Unmatched fragments: The di�erence between the length of the second shortest and

the second longest fragment in the connected component is more than the tolerance
value T . We ignore the shortest and the longest fragments to allow two outliers per
component.

3. Weak overlap: The connected component contains at least one pair of clones that
are very unlikely to overlap (i.e., have Sulston score of at least 1e-2.5 for MTP-ILP
or 1e-1 for MTP-MST).

For each candidate component, a min-cut algorithm is used to partition it by remov-
ing the weakest set of edges (i.e., minimum total edge weight) [11]. After a component
is partitioned into two subgraphs, we check both subgraphs against the three conditions.
If at least one is satisfied, we partition that component again. This iterative process ter-
minates as soon as there are no more components that need to be split.

Elimination of spurious components. In order to introduce the notion of spurious
components, let us assume for the time being that the exact locations of the clones
in a contig are known. Let U be a connected component of G, and let N(U) be the
corresponding connected component cloneset. We call U spurious if the overlapping
region for the clones in N(U) is spanned by another clone in the contig. An example is
illustrated in the Appendix.

This step is crucial to reduce the number of redundant clones in the preliminary MTP
produced by MTP-ILP. Recall that MTP-ILP selects the smallest set of clones that cover
each connected component in the MFG. If the spurious components are not removed, at
least one clone in each spurious component is added to the MTP without contributing
to the overall coverage.

Since the exact ordering of the clones is not available, we employ a probabilistic
method to detect spurious components. More specifically, we compute the probability
that a connected component is observed purely by chance. If this probability is high then
we mark the component as spurious. We expect the number of spurious components to
be low, since missing fragments or extra fragments are unlikely to occur frequently for
a specific cloneset.

In our model, we assume that fragment sizes are distributed uniformly, and that the
probability that two clones share a fragment is P � 2T�gellen [19], where T is the tol-
erance and gellen is the number of possible fragment size values. The probability that
two clones share f fragments is P f and the probability that c clones share f fragments
is P(c�1) f . This suggests that the probability that a connected component U is observed
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in the MFG is P(�U��1) f , where f is number of times that N(U) forms a connected com-
ponent. In our algorithm, if (�U � � 1) f is lower than a threshold Q then we mark U as
spurious. Spurious components are removed from the MFG permanently.

Removing clones that are buried into multiple clones. Recall that the goal of the first
step in the construction of the MFG is to bury clones into other clones to reduce the
problem size. In this step, we reduce the problem size further by removing clones that
are buried into multiple clones. For example, in Figure 3 in the Appendix, clone � is
buried into � 
 �, thus � can be removed.

For each clone in a contig, we compute the ratio between the number of its fragments
in the MFG and the total number of its fragments. If at least B�% of its fragments are
already in the MFG, then we mark that clone buried. However, there is a complication.
It is possible that two clones are mutually buried and therefore we cannot remove both.
In order to solve this problem, we first identify all possible candidates that can be buried
into multiple clones. Then, we examine each connected component U of G, and save
N(U) in a list L if all clones in N(U) are candidates to be buried.

All candidates that do not exist in any N(U) � L can be buried. However, we need to
make sure that at least one clone in each N(U) � L is not buried, otherwise the region
in the target genome that is represented by U is not covered. So the task at hand is to
remove as many candidate clones as possible with the constraint that at least one clone
survives from each cloneset N(U) � L. This problem is called minimum hitting set and
it is NP-complete (polynomial reduction from the vertex cover problem [8]). Here, we
solve it sub-optimally using a greedy approach [8]. At each iteration, we (1) select the
clone c that occurs in the maximum number of clone sets in L, (2) remove all clone
sets that contain c, (3) save c into minimum hitting set H, and (4) repeat. The iterative
process terminates when the list L is empty.

Buried clones selected in this way are removed from the MFG permanently. If this
removal introduces components with only one node, they are also removed from the
MFG permanently. The algorithm is summarized as Algorithm 1 in the Appendix.

Adding mandatory clones to the MFG. Clones that have to be selected as MTP clones
are called mandatory clones. More specifically, if at least 50% of the fragments of a
clone are not present in the MFG, then that clone is marked as mandatory. When a
clone is marked as mandatory, it is immediately stored in the MTP and ignored for
further analysis by removing all of its fragments from the MFG.

3.2 Solving the MTP Via ILP

Recall that the MTP can be computed by selecting the smallest set of clones that cover
all connected components of the MFG. This problem is a special case of the minimum
hitting set problem. Although this problem is NP-complete on general graphs [8], it can
be solved optimally in polynomial time on overlap (or interval) graphs [3]. Here, we solve
this problem optimally by expressing it as an integer linear program (ILP), but first we
remove any connected component from the MFG that does not a�ect the solution.

We reduce the problem size by removing some of the connected components of G ac-
cording to the following Lemma (the proof is immediate). This simplification step dras-
tically reduces the execution time required to solve the ILP (about 200-fold for rice).
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Lemma 1. Let U�V be two connected components of G, such that N(V) � N(U) and
G� is a graph obtained from G by removing U. If M is an MTP for G� then M is an MTP
for G.

The MTP problem can be expressed as follows

Minimize
�

c�N(V)

X[c]

Subject to
�

c�N(V)

X[c]�CC[c�U] � 1 U � G

X[c] � �0� 1	 c � N(V)

The coeÆcient CC[c�U] is 1 if clone c � N(V) has a fragment f that belongs to the
connected component U of G, 0 otherwise. The integer variable X[c] is 1 if c � N(V) is
selected, 0 otherwise. When c is selected, all connected components U of G such that
c � N(U) are covered.

We generate one ILP for each contig. The number of variables in each ILP is �N(V)�
(i.e., number of clones that contain fragments in the MFG). We do not need to relax
the ILP to a linear program, because the problem size is small enough that can be
solved optimally using GNU Linear Programming Package (GLPK). The clones in each
solution set are then merged in the preliminary MTP. This preliminary MTP is very
likely to contain several redundant clones and need to be processed further.

3.3 Solving the MTP Via MST

From now on, all the clones in the physical map that do not belong to the preliminary
MTP are disregarded. A new MFG G � (V� E) is constructed only on the clones in the
preliminary MTP. Then, an overlap graph is built from G and the minimum spanning
tree (MST) of the overlap graph is computed to order the clones. Finally, the shortest
path from the first clone to the last clone in the ordering is computed. Clones on this
path constitute the final MTP. Here are the details.

First, MTP-MST attempts to order the clones in the preliminary MTP. For this pur-
pose, a weighted overlap graph GO � (VO� EO) is constructed for each contig, where
VO is the set of preliminary MTP clones in each contig and EO � �(u� v)� There exists a
connected component U of G such that �u� v	 � N(U)	. The weight of edge (u� v) � EO

is again the negative logarithm of the Sulston score between u and v.
Figure 1-RIGHT shows the overlap graph for the MFG in Figure 1-LEFT. For exam-

ple, there is an edge between clones � and � because their fragments occur together in
at least one connected component in the MFG (see Figure 1-LEFT).

In [24] we established that under some assumptions on the metrics (which are also
met here), the MST of an edge-weighted overlap graph gives an ordering of nodes in
the graph. One of the assumptions is that edge weights are proportional to the overlap
size. Although the correlation between Sulston score and overlap size is not perfect, the
MST still gives very accurate ordering because the clones come from the preliminary
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MTP and not the original problem. Recall that in the preliminary MTP a clone is not
expected to overlap to many clones with similar overlap size.

According to our experiments, the MST of GO is usually a path. When the MST is
not a path, the relative ordering of some of the clones may not be determined. However,
this is not a serious problem if we can detect a pair of overlapping clones that cover
the group of clones whose order is undetermined. Because of this overlap, clones with
unknown relative ordering do not need to be in the MTP, hence they can be discarded
in the analysis.

Once the MST of GO is computed, we pick the longest path � in the tree. If there is
more than one such path, we select the path with the smallest total weight. The rationale
is to minimize the total overlap size between consecutive clones, and thus select the
path with higher coverage. The clones in � cover almost the whole contig, but they
may not be an MTP. In order to find the MTP, the path � must be augmented with high
confidence overlap edges and a shortest path must be found.

To minimize the possibility of adding false negative and false positive edges to �,
we use several criteria based on the Sulston score and the MFG. The details of this
algorithm are shown in Algorithm 2 in the Appendix. After augmenting �, the shortest
path from u1 to u��� (in terms of number of hops) is computed. All nodes in this path are
chosen as the MTP clones of this contig.

4 Experimental Results

We used the genomic data of two plants, namely barley and rice, to compare our soft-
ware to FPC-MTP (hereafter called FPC to be clearer). We ran FPC and FMTP on the
physical maps of rice and barley and obtained their MTPs. The physical maps were
obtained using FPC and our compartmentalized method [5] on real restriction finger-
prints of BACs. Restriction fingerprint data for rice and barley BACs were obtained
from AGCoL [1] and our NSF-sponsored project [14], respectively.

The physical map that we used for rice contains 22,474 clones, 1,937 contigs and
1,290 singletons. The publicly available rice physical map [1] is a superset of our map
because we selected only clones that could be uniquely mapped to the rice genome.
Barley physical map contains 72,052 clones, 10,794 contigs, and 10,598 singletons.

Since the barley genome has not been fully sequenced yet, it is not possible to equiva-
lently assess the quality of the barley MTP. However, we obtained genomic coordinates
for all rice BACs in the physical map by locating their BAC end sequences (BESs) on
the genome. Details of this procedure were given in [5]. Before we present the exper-
imental results, we describe how to compute the best and the “average” MTP, which
metrics are used to evaluate the quality of the MTP, and the parameters used.

4.1 Optimal and Random MTP

One of the first questions we asked ourselves was “Given a physical map, what is the
best (and the average) coverage the MTP can achieve?”. If the coordinates of the clones
are known, then we can compute the optimal MTP as follows. Given a contig, we com-
pute the optimal MTP by first building a directed interval graph where each node is
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a clone and there is an edge between two clones if their coordinates are overlapping.
Buried clones are obviously disregarded. Then, we compute the shortest (unweighted)
path from the leftmost clone to the rightmost clone. The clones in the path constitute
the optimal MTP. We record the number of clones of the MTP and its genome coverage.

In order to have a fair comparison between the computed MTP and the optimal MTP,
we also limit the number of MTP clones that can be selected as optimal MTP. The
number of optimal MTP clones in a contig is bounded by the number of computed
MTP clones in that contig.

If the optimal MTP is the best coverage we can hope for, the random MTP is the
one we could achieve if we had no particular strategy. For the random MTP, we select
a set of clones for each contig at random, according to a uniform distribution. The
total number of MTP clones selected is matched to the total number of MTP clones
computed by either FPC or FMTP. The number of MTP clones that are selected for
each contig is determined by distributing the total of available MTP clones among the
contigs proportional to their size.

4.2 Metrics

Several metrics have been devised to evaluate the quality of the MTP. Due to lack of
space, we can only describe one.

Global and contig-wise coverage. The global coverage of an MTP is the ratio between
the total length of the region spanned by all MTP clones and the genome size.

The contig-wise coverage of a contig is the ratio between the coverage of MTP clones
and the coverage of all clones in the contig. The contig-wise coverage is computed for
each contig and then an overall score is computed as the weighted average of contig-
wise coverage, where the weight is the number of MTP clones in each contig. Although
contig-wise coverage appears very similar to global coverage, it may produce di�erent
results when a region in the genome is covered by multiple contigs.

4.3 Parameters

Both FPC and FMTP have six parameters. Depending on the fingerprinting method (i.e.,
agarose or High Information Content Fingerprinting (HICF)), FMTP provides default
values for its parameters. Using values for these parameters close to the defaults is
crucial to obtain good performance. For example, the cuto� parameter C should be
changed slightly. By default, MTP-ILP uses a low C value (1e-10 for agarose or 1e-40
for HICF). Since MTP-ILP processes the original contigs which usually contain many
clones, a higher value of C would introduce many false positive overlaps. On the other
hand, to detect shorter overlaps, MTP-MST uses a high C value (1e-2 for agarose or
1e-10 for HICF).

We have generated a large number of MTPs using both tools with several parameter
sets, however we only recorded the best possible MTP for a given size (i.e., number of
clones). If we obtained two MTPs Mi and M j using di�erent parameter values, if the
size of Mi is greater than the size of M j then the coverage of Mi must be greater than
coverage of M j, or otherwise Mi is disregarded. As a result, in the experimental results
as the size of the MTP increases, the coverage increases monotonically.
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Fig. 2. Comparing the MTPs generated by FMTP and FPC with several parameter sets. Each
point in the graph represents a unique MTP. (LEFT) Contig-wise coverage, (RIGHT) Optimal,
global, and random coverage.

In order to have a fair comparison between FMTP and FPC, we used the same B and
T values used by FPC when building the physical map (B � 90, T � 7 for rice, and
T � 3 for barley). We set the C for the MTP-MST to values between 9e-2 and 5e-4. For
all other parameters, we used the default values (Q�3, B��80, C��1e-2.5 for MTP-ILP,
1e-1 for MTP-MST, C�1e-10 for MTP-ILP).

4.4 Evaluation Results

The graphs summarizing the results are shown in Figure 2. Each point in the graphs
represents an MTP. Figure 2-LEFT shows the contig-wise coverage as a function of
the number of MTP clones; Figure 2-RIGHT illustrates optimal, global, and random
coverage of the MTPs as a function of the MTP size.

First, observe that when all clones in the rice contigs are selected as MTP clones,
the global coverage is only 94.45% of the genome. As shown in Figure 2-LEFT and
RIGHT, FMTP produces MTPs with significantly better contig-wise and global cov-
erage than FPC, sometimes even with fewer clones. For instance, the highest possible
contig-wise coverage that we were able to obtain by using FPC is 84.96%, whereas
FMTP’s is 85.11% with about 460 (12%) less clones. This would imply 12% reduction
in the sequencing costs. Also, global coverage of MTPs produced by FMTP converges
to the optimum coverage much faster than FPC.

The number of redundant clones and gaps produced by FPC and FMTP are almost
identical and very small. The average overlap size between consecutive clones is smaller
in FMTP than FPC (data not shown). This explains the di�erence in coverages in Figure 2.

Another interesting observation can be made by comparing the optimal coverage in
Figure 2-RIGHT. The optimal MTP for FMTP has higher coverage and has a smaller
number of clones than the optimal MTP of FPC. Recall that the optimal coverage is
computed by selecting a set of clones for each contig that covers the widest possible
region. A higher coverage (even when the number of clones is smaller) suggests that
FMTP selects relatively more MTP clones from the “big” contigs than FPC.

We ran FMTP and FPC on the barley physical map generated by our group at the
University of California, Riverside and several other institutions [14]. FPC generated
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MTPs that contain between 11,000 and 21,000 clones. When default values are used,
FMTP generated MTPs that contain about 18,000 clones.

In terms of running time, FMTP and FPC are comparable. Both tools compute MTP
in a couple of hours.

5 Conclusions

We presented a set of novel algorithms to compute the MTP of a physical map by
using a two-step approach. In the first step, we used a stringent threshold to reduce
the problem size by generating a preliminary MTP without compromising the coverage
of the contigs. In the second step, we attempted to order the clones in the preliminary
MTP by computing MST of an overlap graph. Then, we ran a shortest path algorithm
to compute the MTP. Our experimental results show that our method generates MTPs
with significantly higher coverage than the most commonly used software FPC, even
using a smaller number of MTP clones. Our experimental results also show that FMTP
could reduce substantially the cost of clone-by-clone sequencing projects.
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Appendix

An Example of a Spurious Component

In Figure 3, an illustration of five clones in a contig are shown based on their real coor-
dinates in the genome. Suppose now that the MFG of this contig contains a connected
component that contains fragments only from clones � and �. That component is spuri-
ous (i.e., does not represent a region in the target genome) because the overlap between
clones � and � is completely covered by clone �. Spurious components arise for two
reasons, namely missing fragments (in clone � in the example) or extra fragments (in
clone � or � in the example).

Fig. 3. A layout of five clones in a contig based on their actual genome coordinates
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Algorithm 1
1: Input: Set of clones � in the contig
2: Input: G � (V� E) �MFG of ��
3: Output: G �Graph obtained by removing clones that are buried into multiple clones�
4: A��� �List of candidate clones�
5: for all clones c � � do
6: mc � 0 �number of times c has a fragment in G�

7: for all connected components U � V do
8: if c � N(U) then
9: mc � mc � 1

10: rc � mc��c� ��c� is the number of fragments in c�
11: if rc � B� then
12: Add c to A
13: L � �� �Set of clone sets�
14: for all connected components U � V do
15: if N(U) � A then
16: L�insert(N(U))
17: H �Solve Minimum Hitting Set(L)
18: for all clones c � A � H do
19: for all nodes v � V do
20: if N(v) � c then
21: Remove v from G
22: Remove connected components of size 1 from G

Algorithm 2
1: Input: The longest path � from the MST of GO

2: Input: Clones ui � �, 1 � i � ���, where i is the order of u
3: Input: G � (V� E) �MFG of the preliminary MTP clones in the contig�
4: Output: Augmented path �
5: for d � 2 to ��� � 1 do
6: for i � 1 to ��� � d do
7: Check if S (ui� ui�d�1) � C
8: Check if S (ui�1� ui�d) � C
9: Check if there exists a connected component U of G such that

�i�d
j�i u j � U

10: Check if S (ui� ui�d) � C
11: if All conditions are true then
12: Add (ui� ui�d) to �.

Pseudocode for Removal of Clones that are Buried into Multiple Clones

A sketch of the algorithm that removes clones that are buried into multiple clones is
presented as Algorithm 1.

Pseudocode for Clone Overlap Detection

A sketch of the algorithm that detects clone overlap is presented as Algorithm 2.
At each iteration four conditions are checked to determine if ui and ui�d are overlap-

ping where ui� 1 � i � ���, is the ith clone in �. All conditions have to be true to add the
edge (ui� ui�d) to �.
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In line 7 and 8 of Algorithm 2 we check whether the clone pairs ui� ui�d�1 and
ui�1� ui�d are overlapping. Obviously, if at least one of these pairs do not overlap then ui

and ui�d cannot be overlapping (assuming that no clone is completely contained in an-
other clone). In line 9, we check if clones ui� ui�1� � � � � ui�d have fragments together in at
least one connected component of G. If ui and ui�d are overlapping then ui� ui�1� � � � � ui�d

have to be overlapping, and therefore they should share at least one fragment in G. At
the end, we check if S (ui� ui�d) � C.
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Abstract. Among the measures for quantifying the similarity between
protein 3-D structures, contact map overlap (CMO) maximization de-
served sustained attention during past decade. Despite this large involve-
ment, the known algorithms possess a modest performance and are not
applicable for large scale comparison.

This paper offers a clear advance in this respect. We present a new
integer programming model for CMO and propose an exact B&B algo-
rithm with bounds obtained by a novel Lagrangian relaxation. The effi-
ciency of the approach is demonstrated on a popular small benchmark
(Skolnick set, 40 domains). On this set our algorithm significantly out-
performs the best existing exact algorithms. Many hard CMO instances
have been solved for the first time. To assess furthermore our approach,
we constructed a large scale set of 300 protein domains. Computing the
similarity measure for any of the 44850 couples, we obtained a classifi-
cation in excellent agreement with SCOP.

Keywords: Protein structure alignment, contact map overlap, combina-
torial optimization, integer programming, branch and bound, Lagrangian
relaxation.

1 Introduction

A fruitful assumption in molecular biology is that proteins sharing close three-
dimensional (3D) structures are likely to share a common function and in most
cases derive from a same ancestor. Computing the similarity between two pro-
tein structures is therefore a crucial task and has been extensively investigated
[1,2,3,4]. Interested reader can also refer to [6,7,8,9,10]. We study here the
contact-map-overlap (CMO) maximization, a scoring scheme first proposed in
[5]. This measure is robust, takes partial matching into account, is translation-
invariant and it captures the intuitive notion of similarity very well. Formally,
a contact map is a 0 − 1 symmetric matrix C where cij = 1 if the Euclidean
distance between the alpha carbons (Cα) of the i-th and the j-th amino acid
of a protein is smaller than a given threshold in the protein native fold. In the

� Corresponding author.

K.A. Crandall and J. Lagergren (Eds.): WABI 2008, LNBI 5251, pp. 162–173, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



An Efficient Lagrangian Relaxation for the Contact Map Overlap Problem 163

CMO approach one tries to evaluate the similarity between two proteins by de-
termining the maximum overlap (also called alignment) of their contact maps.

The counterpart of the CMO problem in the graph theory is the maximum
common subgraph problem [11], which is APX-hard [12]. CMO is also known to
be NP-hard [5]. Designing efficient algorithms that guarantee the CMO quality
is an important problem that has eluded researchers so far. The most promising
approach seems to be integer programming coupled with either Lagrangian re-
laxation [2] or B&B reduction technique [13,14]. This paper confirms once more
the superiority of Lagrangian relaxation approach to solve CMO problems. More-
over, the Lagrangian relaxation has been successfully applied to RNA structures
alignments [15].

The contributions of this paper are as follows. We propose a new mixed in-
teger programming (MIP) formulation for the CMO problem. We present an
efficient Lagrangian relaxation to solve our model and incorporate it into a B&B
search. We also developed a second version of our algorithm which performs
in agreement with the type of the secondary structure elements (SSE). To the
best of our knowledge, such incorporation of biological informations in the CMO
optimization search is done for the first time. We compare our approach to the
best exact algorithms that exist [2,14] on a widely used benchmark (the Skol-
nick set), and we notice that it outperforms them significantly, both in time and
in quality of the provided bounds. New hard Skolnick set instances have been
solved. Finally, our method was used as a classifier on both the Skolnick set and
the Proteus 300 set (a large benchmark of 300 domains that we extracted from
SCOP [19]). Again, we are not aware of any previous attempt to apply a CMO
approach on such large database. The obtained results are in perfect agreement
with SCOP classification and clearly demonstrate that our algorithm can be
used as a tool for large scale classification.

2 The Mathematical Model

Our interest in CMO was provoked by its resemblance with the protein threading
problem (PTP) for which we have presented an approach based on the non-
crossing matching in bipartite graphs [16]. It yielded a highly efficient algorithm
by using the Lagrangian duality [17,18]. We aim to extend this approach in the
case of CMO by presenting it as a matching problem in a bipartite graph, which
in turn will be posed as a maximum weight augmented path in a structured
graph.

Let us first introduce a few notations as follows. The contact maps of two
proteins P1 and P2 are given by graphs Gm = (Vm, Em) for m = 1, 2, with
Vm = {1, 2, . . . , nm}. The vertices Vm are better seen as ordered points on a line
and correspond to the residues of the proteins. The sets of edges Em correspond
to the contacts. The right and left neighbours of node i are elements of the sets
δ+m(i) = {j|j > i, (i, j) ∈ Em} and δ−m(i) = {j|j < i, (j, i) ∈ Em}. Let i ∈ V1 be
matched with k ∈ V2 and j ∈ V1 be matched with l ∈ V2. We will call a matching
non-crossing, if i < j implies k < l. Feasible alignments of two proteins P1 and
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Fig. 1. Left: Vertex 1 from V1 is matched with vertex 1 from V2 and 2 is matched with
3: matching couple (1, 1)(2, 3). Other matching couples are (3, 4)(5, 5). This defines a
feasible matching M = {(1, 1)(2, 3), (3, 4)(5, 5)} with weight w(M) = 2. Right: The
same matching is visualized in the graph B′.

P2 are given by non-crossing matchings in the complete bipartite graph B with
a vertex set V1 ∪ V2.

Let the weight wikjl of the matching couple (i, k)(j, l) be set as follows

wikjl =
{

1 if (i, j) ∈ E1 and (k, l) ∈ E2

0 otherwise. (1)

For a given non-crossing matching M in B we define its weight w(M) as the
sum of weights over all couples of edges in M . CMO consists then in maximizing
w(M), where M belongs to the set of all non-crossing matchings in B.

In [16,17,18] we have already dealt with similar non-crossing matchings (in fact
in the PTP they are many-to-one) and we have proposed for them a network flow
presentation. This approach is adapted to CMO as follows (see for illustration
Fig. 1). The edges of the bipartite graph B are mapped to the points of a
n1 × n2 rectangular grid B′ = (V ′, E′) according to the rule: a point (i, k) ∈ V ′

corresponds to the edge (i, k) in B and vice versa.

Definition 1. A feasible path is an arbitrary sequence of points in B′ (i1, k1),
(i2, k2), ..., (it, kt) such that ij < ij+1 and kj < kj+1 for j ∈ [1, t− 1].

The correspondence between a feasible path and a non-crossing matching is
then obvious. Searching for feasible alignments of two proteins is in this way
converted into searching for strictly increasing node sets in B′. We also add arcs
(i, k) → (j, l) ∈ E′ iff wikjl = 1. In B′, solving CMO, corresponds to finding the
densest (in terms of arcs) subgraph of B′ whose node set is a feasible path.

To each node (i, k) ∈ V ′ we associate now a 0/1 variable xik, and to each arc
(i, k) → (j, l) ∈ E′, a 0/1 variable yikjl . Denote by X the set of feasible paths.
The problem can now be stated as follows :

v(CMO) = max
∑

(ik)(jl)∈E′

yikjl (2)
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subject to

xik ≥
∑

l∈δ+
2 (k)

yikjl, j ∈ δ+1 (i), i ∈ [1, n1 − 1], k ∈ [1, n2 − 1]. (3)

xik ≥
∑

l∈δ−
2 (k)

yjlik, j ∈ δ−1 (i), i ∈ [2, n1], k ∈ [2, n2]. (4)

xik ≥
∑

j∈δ+
1 (i)

yikjl, l ∈ δ+2 (k), i ∈ [1, n1 − 1], k ∈ [1, n2 − 1]. (5)

xik ≥
∑

j∈δ−
1 (i)

yjlik , l ∈ δ−2 (k), i ∈ [2, n1], k ∈ [2, n2]. (6)

x ∈ X (7)

Actually, we know how to represent X with linear constraints. It is easily seen
that definition 1 of a feasible path yields the following inequalities

k∑

l=1

xil +
i−1∑

j=1

xjk ≤ 1, i ∈ [1, n1], k ∈ [1, n2]. (8)

The same definition also implies that the j-th residue from P1 could be
matched with at most one residue from P2 and vice-versa. This explains the
sums on the right hand sides of (3) and (5) (for arcs having their tails at vertex
(i, k)); and (4) and (6) (for arcs heading to (i, k)). Any (i, k)(j, l) arc can be
activated (i.e. yikjl = 1) iff xik = 1 and xjl = 1 and in this case the respective
constraints are active because of the objective function.

A tighter description of the polytope defined by (3)–(6) and 0 ≤ xik ≤ 1,
0 ≤ yikjl could be obtained by lifting the constraints (4) and (6) as it is shown
in Fig. 2. The points shown are just the predecessors of (i, k) in the graph
B′ and they form a grid of δ−1 (i) rows and δ−2 (k) columns. Let i1, i2, . . . , is
be all the vertices in δ−1 (i) ordered according to the numbering of the vertices
in V1 and likewise k1, k2, . . . , kt in δ−2 (k). Then the vertices in the l-th col-
umn (i1, kl), (i2, kl), . . . (is, kl) correspond to pairwise crossing matchings and
at most one of them could be chosen in any feasible solution x ∈ X (see
(6)). This ”all crossing” property holds even if we add to this set the follow-
ing two sets: (is, k1), (is, k2), . . . , (is, kl−1) and (i1, kl+1), (i1, kl+2), . . . , (i1, kt).
Denote by colik(l) the union of these three sets, and analogously, by rowik(j)
the corresponding union for the j-th row of the grid. When the grid is one
column/row, only the set rowik(j)/colik(l) is empty.

Now a tighter LP relaxation of (3)–(6) is obtained by substituting (4) with
(9), and (6) with (10).

xik ≥
∑

(r,s)∈rowik(j)

yrsik, j ∈ δ−1 (i), i ∈ [2, n1], k ∈ [2, n2]. (9)
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Fig. 2. The shadowed area represents the set of vertices in V ′ which are tails for the
arcs heading to a given point (i, k). In a) : • correspond to the indices of yjlik in (6)
for l fixed. b) presents the same for the tightened constraint (10). In c) : • correspond
to the yjlik in (4) for j fixed. d) presents the same for the tightened constraint (9).

xik ≥
∑

(r,s)∈colik(l)

yrsik, l ∈ δ−2 (k), i ∈ [2, n1], k ∈ [2, n2]. (10)

Remark: Since we are going to apply the Lagrangian technique there is no need
neither for an explicit description of the set X neither for lifting the constraints
(3) and (5).

3 Method

3.1 Lagrangian Relaxation

Here, we show how the Lagrangian relaxation of constraints (9) and (10) leads
to an efficiently solvable problem, yielding upper and lower bounds that are
generally better than those found by the best known exact algorithm [2].

Let λh
ikj ≥ 0 (respectively λv

ikj ≥ 0) be a Lagrangian multiplier assigned to
each constraint (9) (respectively (10)). By adding the slacks of these constraints
to the objective function with weights λ, we obtain the Lagrangian relaxation of
the CMO problem

LR(λ) = max
∑

(ik)(jl)∈EB′

yikjl +
∑

i,k,j∈δ−
1 (i)

λh
ikj(xik −

∑

(r,s)∈rowik(j)

yrsik)

+
∑

i,k,l∈δ−
2 (k)

λv
ikl(xik −

∑

(r,s)∈colik(l)

yrsik)
(11)

subject to x ∈ X , (3), (5) and y ≥ 0.

Proposition 1. LR(λ) can be solved in O(|V ′| + |E′|) time.

Proof. For each (i, k) ∈ V ′, if xik = 1 then the optimal choice yikjl amounts
to solving the following : The heads of all arcs in E′ outgoing from (i, k) form
a |δ+(i)| × |δ+(k)| table. To each point (j, l) in this table, we assign the profit
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max{0, cikjl(λ)}, where cikjl(λ) is the coefficient of yikjl in (11). Each vertex in
this table is a head of an arc outgoing from (i, k). Then the subproblem we need
to solve consists in finding a subset of these arcs having a maximal sum cik(λ)
of profits(the arcs of negative weight are excluded as candidates for the optimal
solution) and such that their heads lay on a feasible path. This could be done by
a dynamic programming approach in O(|δ+(i)||δ+(k)|) time. Once profits cik(λ)
have been computed for all (i, k) we can find the optimal solution to LR(λ) by
using the same DP algorithm but this time on the table of n1 × n2 points with
profits for (i, k)-th one given by: cik(λ) +

∑
j∈δ−

1 (i) λ
h
ikj +

∑
l∈δ−

2 (k) λ
v
ikl, where

the last two terms are the coefficients of xik in (11). The inclusion x ∈ X is
explicitly incorporated in the DP algorithm.

3.2 Subgradient Descend

In order to find the tightest upper bound on v(CMO) (or eventually to solve
the problem), we need to solve in the dual space of the Lagrangian multipliers
LD = minλ≥0 LR(λ), whereas LR(λ) is a problem in x, y. A number of methods
have been proposed to solve Lagrangian duals: dual ascent, constraint genera-
tion, column generation, etc... Here, we choose the subgradient descent method,
because of our large number of lagrangian multipliers. It is an iterative method
in which at iteration t, given the current multiplier vector λt, a step is taken
along a subgradient of LR(λ); then, if necessary, the resulting point is projected
onto the nonnegative orthant. It is well known that practical convergence of the
subgradient method is unpredictable. For some ”good” problems, convergence
is quick and fairly reliable, while other problems tend to produce erratic behav-
ior. The computational runs on a rich set of real-life instances confirm that our
approach belong to the ”good” cases.

In our realization, the update scheme for λikj (and analogously for λikl) is
λt+1

ikj = max{0, λt
ikj − Θtgt

ikj}, where gt
ikj = x̄ik −

∑
ȳjlik (see (9) and (10) for

the sum definition) is the sub-gradient component (0, 1,or −1), calculated on
the optimal solution x̄, ȳ of LR(λt). The step size Θt is Θt = α(LR(λt)−Zlb)�

(gt
ikj)2+

�
(gt

ikl)
2

where Zlb is a known lower bound for the CMO problem and α is an input
parameter. Into this approach the x-components of LR(λt) solution provides a
feasible solution to CMO and thus a lower bound also. If LD ≤ v(CMO) then
the problem is solved. If LD > v(CMO) holds, in order to obtain the optimal
solution, one could pass to a B&B algorithm suitably tailored for such an upper
and lower bounds generator.

3.3 Branch and Bound

From among various possible nodes splitting rules, the one shown in Fig. 3
gives good results (see section 4). Formally, a node of B&B is given by n2

couples (bk, tk) for k ∈ [1, n2] representing the zone to be explored (the white
area on Fig. 3). A vertex (j, l) of the graph B′ belongs to this area if bl ≤
j ≤ tl. Let (rb, cb) be the argmax(i,k)∈V ′ [min(D(i, k), U(i, k))], where D(i, k) =∑

l≥k max(i−bl, 0) and U(i, k) =
∑

l≤k max(tl− i, 0). Now, the two descendants
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Fig. 3. Sketch of the B&B splitting strategy. a) The white area represents the current
node feasible set; b) Fixing the point (rb, cb) creates the regions, D(rb, cb) and U(rb, cb);
c) and d) are the descendants of the node a).

of the current node are obtained by discarding from its feasible set the vertices
in U(rb, cb) and D(rb, cb) respectively. The goal of this strategy is twofold: to
create descendants that are balanced in sense of feasible set size and to reduce
maximally the parent node’s feasible set.

Finally, the main steps of the B&B algorithm are as follows:

Initialization: Set L={root} (root is the original CMO problem, i.e. with no re-
strictions on the feasible paths).
Problem selection and relaxation: Select and delete the problem P from L hav-
ing the biggest upper bound. Solve the Lagrangian dual of P .
Fathoming and Pruning: Follow classical rules.
Partitioning : Create and add to L the two descendants of P
Termination : if L = ∅, the solution (x∗, y∗) is optimal.

3.4 Adding Biological Informations

In it’s native state, a protein contains secondary structure elements (SSE), which
are highly regular substructures. There are two SSE types: α helix (H) and β
strand (b). Residues which are not part of a SSE are said to be in a coil (c).

As defined in (2)-(7), CMO does not consider the SSE type. Potentially, this
can conduct to biologically not acceptable matching, such as aligning α with β
SSE. To avoid that, we enrich the feasible path definition with the SSE informa-
tion. A node (i, k) will be not acceptable, if residue i is of type H , while residue
k is of type b, or vice versa. The SSE knowledge is already used in non-CMO
methods like VAST[1], but has been never used before in a CMO approach. The
impact of such a filter on the CMO behavior is twofold: from one hand it di-
rectly leads to a biologically correct alignment, from the other hand, it makes
the search space sparser, and accelerates about 2.5 times the solution process.
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4 Numerical Results

The results presented here were obtained on a computer with AMD Opteron
(TM) CPU at 2.4 GHz, 4 Gb Ram. The algorithm was implemented in C++.
To generate contact maps we consider two residues to be in contact if their Cα are
within 7.5 Å, without taking into account contacts between consecutive residues.
When needed, the SSE information was computed using the publicly available
software Kaksi1. The first version of our algorithm will be denoted by A_purva2,
while the version with the SSE filter will be indicated as A_purva_sse.

To evaluate these algorithms we performed two kinds of experiments. In the
first one (section 4.1), we compared our approach - in terms of performance and
quality of the bounds - with the best exact algorithms from the literature [2,14].
The former one is based on Lagrangian relaxation, and will be denoted here
by LAGR. Our approach differs from it in two main points: i) in the proposed
MIP formulation and ii) in the set of dualized constraints. This can explain the
significant differences in the computational behavior of A_purva versus LAGR.
The second algorithm, denoted here by CMOS, has been recently described in
[14]. The comparison was done on a set of protein domains suggested by J.
Skolnick. It contains 40 medium size domains from 33 proteins. The number of
residues varies from 97 (2b3iA) to 256 (1aw2A), and the number of contacts
varies from 320 (1rn1A) to 936 (1btmA). According to SCOP classification [19],
the Skolnick set contains five families (see Table 1).

Table 1. The five families in the Skolnick set

SCOP Fold SCOP Family Proteins

Flavodoxin-like CheY-related 1b00, 1dbw, 1nat, 1ntr, 3chy
1qmp(A,B,C,D), 4tmy(A,B)

Cupredoxin-like Plastocyanin 1baw, 1byo(A,B), 1kdi, 1nin
/azurin-like 1pla, 2b3i, 2pcy, 2plt

TIM beta/alpha-barrel Triosephosphate 1amk, 1aw2, 1b9b, 1btm, 1hti
isomerase (TIM) 1tmh, 1tre, 1tri, 1ydv, 3ypi, 8tim

Ferritin-like Ferritin 1b71, 1bcf, 1dps, 1fha, 1ier, 1rcd

Microbial ribonuclease Fungal ribonucleases 1rn1(A,B,C)

Afterwards (section 4.2), we experimentally evaluated the capability of our
algorithm to perform as a classifier on two sets: Skolnick and Proteus 300. The
latter benchmark was proposed by us. It contains more, and significantly larger
proteins: 300 domains, with number of residues varying from 64 (d15bbA ) to 455
(d1po5A ). The maximum number of contacts is 1761 (d1i24A ). These domains
are classified by SCOP in 30 families. All our data and results3 are available on
the URL: http://www.irisa.fr/symbiose/softwares/resources/proteus300.
1 http://migale.jouy.inra.fr/outils/mig/kaksi/
2 Apurva (Sanskrit) = not having existed before, unknown, wonderful, ...
3 Contact maps, solved instances, upper and lower bounds, run time, classifications...
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4.1 Performance and Quality of Bounds

The Skolnick set requires aligning 780 pairs of domains. A_purva and LAGR
(whose code was kindly provided to us by G. Lancia) were executed on the
same computer and with the same 7.5Å contact maps. For both algorithms, the
computation time was bounded to 1800 sec/instance. Table 2 shows the number
of instances solved by each algorithm. A_purva succeeded to solve 502 couples,
while LAGR solved only 161 couples. All these 161 instances are ”easy”, i.e. they
align domains from the same SCOP family. In table 2, we also give the number of
solved instances by LAGR and CMOS taken from [14]. These results where obtained
on a similar workstation, with the same time limit (this information was kindly
provided to us by N. Sahinidis), but with different contact maps (the threshold
used was 7Å). CMOS solves 161 easy instances. Note that A_purva is the only
one to solve 338 ”hard” instances, i.e. couples with domains from different fam-
ilies. On the other hand, A_purva was outperformed by its SSE version, which
demonstrated the usefulness of integrating this filter.

Table 2. Number of instances solved by the different CMO methods, with a time limit
of 1800 sec/instance. A purva is the only one able to solve all easy instances, as well
as many of the hard instances. The advantage of adding a SSE filter is noticeable.

Our contact maps (7.5Å) CMOS contact maps (7Å)
LAGR A purva A purva sse LAGR CMOS

Easy instances (164) 161 164 164 150 161

Hard instances (616) 0 338 444 0 0

Total (780) 161 502 608 150 161

Figure 4 compares the time needed by LAGR to that of A_purva on the set of
instances solved by both algorithms. We observe that A_purva is significantly
faster than LAGR (up to several hundred times in the majority of cases). The use
of SSE information can push this even further, since A purva sse is about 2.5
times faster than A purva.

We observed that the time for solving instances (without using SSE infor-
mation) that align domains from the same family varies between 0.04s and
4.27s (except for two instances); this time varies respectively from 17.9s to
more than 1800s when aligning domains from different classes. In this man-
ner our results confirmed once more the property (also observed in [2,14]) that :
instances, such that both domains belong to the same family, seem to be eas-
ily solvable; in contrast to instances that align domains from different
families.

Our next observation concerns the quality of gaps obtained by LAGR and
A_purva on the set of unsolved instances. Remember that when a Lagrangian
algorithm stops because of time limit (1800 sec. in our case) it provides an
upper bound (UB), and a lower bound (LB), which is a real advantage of a
B&B type algorithm compared to any meta-heuristics. The relative gap value
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(UB −LB)/UB, measures how far is the optimization process from finding the
exact optimum. Fig. 5 shows the relative gaps of A_purva plotted against those
of LAGR. The entire figure is very asymmetric to the advantage of our algorithm
since the relative gaps of A_purva are always smaller than those of LAGR, meaning
that the bounds of A_purva are always tighter.
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4.2 A purva as a Classifier

In this section we are interested in checking the ability of A_purva_sse to per-
form successfully as classifier in a given small lapse of time. We used the following
protocol : we limited the runs of A_purva_sse to the root (i.e. B&B was not
used), with a limit of 500 iterations for the subgradient descent. To measure the
similarity between two proteins P1 and P2, we used the function defined in [14]:
Sim(P1, P2) = 2.LB/(|E1| + |E2|), where LB is the incumbent value found by
A_purva_sse. These similarities were given to Chavl [20], a publicly available
tool which proposes both a hierarchical ascendant classification and the cut cor-
responding to the best partition level (therefore, it does not require a similarity
threshold). The obtained result was compared with the SCOP classification at
a family level.

For the Skolnick set, the alignment of all couples was done in less than 810
seconds (� 1.04 sec/couple). The classification returned by Chavl was exactly
the same as the classification at the family level in SCOP. To get a stronger
confirmation of A_purva classifier capabilities, we performed the same operation
on the Proteus 300 set. Aligning the 44850 couples required roughly 22 hours
(� 1.82 sec/couple). The classification returned by Chavl contained 34 classes.
The only difference between our classification and the one of SCOP at the family
level is that 4 SCOP families were each split in two in our classification.

5 Conclusion

In this paper, we give an efficient exact algorithm for contact map overlap prob-
lem. The bounds are found by using Lagrangian relaxation, and the dual problem
is solved by sub-gradient approach. The performance of the algorithm is demon-
strated on a benchmark set of 40 domains and its superiority over the existing
algorithms is obvious. We also propose a suitable filter based on secondary struc-
tures information which further accelerates the solution process. The capacity
of the proposed algorithm to provide a convenient similarity measure was tested
on a large data set of 300 protein domains. We were able to obtain in a short
time a classification in very good agreement to the well known SCOP database.
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Abstract. The current pairwise RNA (secondary) structural alignment
algorithms are based on Sankoff’s dynamic programming algorithm from
1985. Sankoff’s algorithm requires O(N6) time and O(N4) space, where
N denotes the length of the compared sequences, and thus its applicabil-
ity is very limited. The current literature offers many heuristics for speed-
ing up Sankoff’s alignment process, some making restrictive assumptions
on the length or the shape of the RNA substructures. We show how to
speed up Sankoff’s algorithm in practice via non-heuristic methods, with-
out compromising optimality. Our analysis shows that the expected time
complexity of the new algorithm is O(N4ζ(N)), where ζ(N) converges to
O(N), assuming a standard polymer folding model which was supported
by experimental analysis. Hence our algorithm speeds up Sankoff’s algo-
rithm by a linear factor on average. In simulations, our algorithm speeds
up computation by a factor of 3-12 for sequences of length 25-250.

Availability: Code and data sets are available, upon request.

1 Introduction

Within the last few years non-coding RNAs (ncRNAs) have been recognized as
a highly abundant class of RNAs that do not code for proteins but nevertheless
are functional in many biological processes, including localization, replication,
translation, degradation, regulation and stabilization of biological macromole-
cules [19]. Thus, the computational identification of functional RNAs in genomes
is a major, yet largely unsolved, problem. It is well known that structural conser-
vation implies potential function and thus comparative structure analysis is the
gold standard for the identification of functional RNAs and the determination
of RNA secondary structures [22].

Many of the comparative genomics methods for the identification of func-
tional RNA structures require a sequence alignment as input [16,13,23]. How-
ever, an alignment based on primary sequence alone is generally not sufficient
for the identification of conserved secondary structure [6]. This is due to the
fact that functional RNAs are not necessarily conserved on their primary se-
quence level. Instead, the stem-pairing regions of the functional RNA structures
evolve such that substitutions that maintain the bonding between paired bases
� These authors contributed equally to the paper.

K.A. Crandall and J. Lagergren (Eds.): WABI 2008, LNBI 5251, pp. 174–185, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Faster Algorithm for RNA Co-folding 175

are more likely to survive. The base-pair covariation in the structural stems
includes multiple compensatory substitutions (e.g. G:C → A:U) and compat-
ible single substitutions (e.g. G:C → G:U). In 1985 David Sankoff proposed
an algorithm [4], which we shall call SA, designed for the simultaneous align-
ment and structure prediction of homologous structural RNA sequences (for
brevity, we call that problem here the co-folding problem). SA merges the re-
cursions of sequence alignment such as Smith and Waterman’s algorithm [25]
with those of RNA structure prediction algorithms [20,27]. SA takes as input
two sequences and finds a local alignment (two substrings) such that the entire
configuration of structure and alignment is optimal. To combine both structure
and alignment scores, SA aims to maximize the weighted sum of the predicted
structure’s base-pairing interactions and the alignment cost. Base-pairing inter-
actions scores (e.g., Nussinov et al. [20] or Zuker and Stiegler’s energy-based
methods [27]) guide homologous base pairs to align correctly and thus base-
pair covariation can be naturally included as a factor in the alignment solution.
The alignment cost aims to punish for insertions/deletions but encourage com-
pensatory mutations among base-paired characters. SA preserves a common
branching configuration for the aligned structures, but allows variations in the
sizes of the stems and the loops (see Fig. 1).

Unfortunately, SA is not practical for most realistic applications due to its
prohibitive computational cost: the algorithm requires O(N6) time and O(N4)
space, for a pair of sequences of length N . The high complexity of this algorithm
on one hand, and the need for practical solutions on the other hand, motivated
attempts to reduce its complexity heuristically. In recent years, many studies
have suggested practical heuristic methods to reduce SA’s computational cost
[1,3,15,14,7,21,11,10], highlighting the importance of this algorithm in current
RNA comparative structure analysis. Here, in contrast to the above heuristic
approaches, we obtain a non-heuristic speedup, which does not sacrifice the
optimality of results.

Our algorithm extends the approach of Wexler, Zilberstein and Ziv-Ukelson
[26], previously applied to speeding up the classicalO(N3) RNA secondary struc-
ture prediction algorithms [20,27]. The classical algorithms for RNA secondary
structure prediction are based on dynamic programming (DP) and their time
complexities are O(N3), where the bottleneck is due to the fact that the recur-
sion for computing the optimal folding includes a term that takes into account
O(N) possible branching points (see Figure 1) which ”compete” for the optimal
score. The speedup suggested in [26] to the classical O(N3) algorithm computes
an exact optimal folding. This is done by pruning the number of branch points
that need to be considered from O(N) down to ψ(N), where ψ(N) is shown to
be constant on average under standard polymer folding models. The accelerated
algorithm uses a candidate-list approach to utilize two observations: (a) the main
(2D) DP matrix computed by the classical algorithm for RNA secondary struc-
ture prediction obeys the triangle inequality; (b) a classical thermodynamic ar-
gument indicates that the probability for base-pair formation between two bases
q indices apart is bounded by b/qc for some constants b, c > 0 [17,18].

Similarly to the RNA folding algorithms, the time-complexity bottleneck of
SA is also due to the computation of all the scores induced by competing branch
points. However, in contrast to the RNA folding algorithms, in the SA case the



176 M. Ziv-Ukelson et al.

branch point considerations scale up to two orders, as all possible combinations of
pairs of branch point indices (i.e. all possible indices of sequence A × all possible
indices of sequence B, where A and B are the two co-folded sequences) need to
be considered. This adds a factor of O(N2) to the time complexity of SA which
is due to branch point considerations. In this paper we extend the approach
of [26] and apply it to speed up SA by reducing the number of branch points
that need to be considered in the main recursion for the SA score computation.
Although the method suggested in [26] is not directly applicable to the 4D DP
matrix computed in the SA algorithm, we show how to interpret the terms in
the SA algorithm so as to maintain a set of candidate lists that will reduce
the amount of computations needed. The resulting algorithm is guaranteed to
obtain the optimal solution to the problem. In order to do this, we first show
that the DP table computed by the SA recursion also obeys a sort of triangle
inequality, and that the main theorem of [26] regarding redundant candidate
branch-point considerations extends to the branch-point pairs considered by SA.
Based on these proofs, we give a new candidate-list variant of SA that exploits
redundancies in the main SA DP table to speed it up.

Under the probabilistic model of self avoiding random walk [24], which has
been verified experimentally for polymers [17,18], the expected time complexity
of the new algorithm is O(N4ζ(N)), where ζ(N) is the expected maximal size
of a candidate list. In contrast to [26], where ζ(N) converges to a constant, we
show that in fact here ζ(N) converges to O(N). Thus, our algorithm provides
a theoretical speedup over the original SA by a linear factor on average. This
behavior of the co-folding algorithm is verified in an experimental analysis, which
shows a linear growth of the candidate list size with increasing sequence length.
The faster new algorithm was implemented as a filter, denoted fastCoFold,
on top of a popular SA implementation of Havgaard et al. [15]. Our run-time
benchmarks show that fastCoFold is indeed faster in practice when compared
to the standard SA version of the same code, by a factor of 3-12 for sequences
of length 25-250.

The rest of this paper proceeds as follows. Section 2 gives the basic preliminaries
and definitions including an algorithmic background. Section 3 examines proper-
ties of the folding and co-folding DP algorithms which are later exploited by our
pruning method. The new algorithm is described and analyzed in Section 4, and
a comparative performance analysis of the algorithm is given in Section 5.

Due to space restrictions, all proofs are omitted. Proofs, as well as a biological
application of SA to the analysis of functional tandem repeats in C. elegans, will
appear in an extended journal version of the paper.

2 Preliminaries and Definitions

RNA is typically produced as a single stranded molecule, which then folds upon
itself to form a number of short base-paired stems (Fig 1). This base-paired
structure is called the secondary structure of the RNA. Paired bases almost al-
ways occur in a nested fashion in RNA secondary structure. Under the assump-
tion that the structure does not contain pseudoknots, a model was proposed by
Tinoco et al. [12] to calculate the stability (in terms of free energy) of a folded
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Left Branch ][ Right Branch

A-CGGCAAA---UUGGCCG-U ][ GCUGCGUGCAAAGCGC

((((((.........)))))) ][ ...((((.....))))

AUCGCGAAAAAAUUGCGCGAU ][ GCUG-GCGCAAAGC-C

Fig. 1. Co-folding. Left: An example of a branching co-folding. Matched round paren-
theses indicate paired bases in the co-folding, and square brackets indicate a partition
point. In the terminology of Section 2, the left branch is a co-terminus co-folding and
the right side is a dangling co-folding. Right: The (aligned) secondary structures corre-
sponding to the branching co-folding. Both branches consist of a stem (matched bases)
and a loop.

RNA molecule by summing all contributions from the stabilizing, consecutive
base pairs from the loop-destabilizing terms in the secondary structure. This
model has been widely investigated since and parameters for this model were
experimentally collected e.g. by the Turner group [5]. Based on this model, DP
algorithms for computing the most stable structures were proposed [20,27].

The Sankoff co-folding algorithm [4] combines RNA folding with alignment,
by taking into account both sequence and structure homology. This is formalized
below in Definitions 1-4.

Definition 1. An alignment of sequences R′, T ′ is a pair of sequences R, T s.t.
|R| = |T |, R(T ) is obtained from R′(T ′) by adding ‘-’s such that for no index i,
ri = ti = ‘-’.

The alignment score is
∑

i

σ(Ri, Ti). Here, σ(x, y) is the score of substitut-

ing x and y. The indel score σ(x,−) is often indicated by γ(x).

Definition 2. For a sequence F over the alphabet {(, ), .}, where the parentheses
are nested, define P(F) = {(π, π) |π, π are paired parenthesis positions in F}.

Definition 3. For a sequence T over the RNA alphabet {A,U,C,G,−}, a fold-
ing F (T ) is a series over the alphabet {(, ), .}, annotated with the letters of T ,
such that (1)|F (T )| = |T |, (2) F (T ) is nested, and (3) for each paired parenthe-
ses positions (π, π) ∈ P (F ), {Tπ, Tπ} ∈ {{A,U}, {G,C}, {G,U}, {−,−}}.

The folding score is
∑

P (F )

βT
ππ, where βT

ij denotes the score for the stability

contribution of a base-pair between the characters in indices i and j of T .

We note that some SA implementations relax requirement (3) in the above
definition, and instead set βT

ij to a score penalty in those cases when {Ti, Tj}
/∈ {{A,U}, {G,C}, {G,U}}. Furthermore, the implementation of the term βT

ij
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depends on the structure prediction algorithm employed by the specific SA vari-
ant. For example, in variants that are based on McCaskill’s algorithm, such as
PMCOMP [14], βT

ij is the probability for the character at index i of T to form a
base-pair with the character at index j of T . Alternatively, in SA variants that
are based on Zuker’s MFE approach, such as Foldalign [15], the score βT

ij is in
general computed dynamically depending on the structural context, making use
of Turner parameters such as e.g. loop energy rules [27].

Definition 4. A co-folding of two RNA sequences R′, T ′ is the triplet R, T, F
such that R, T is an alignment of R′, T ′ and F is a folding of R and of T .
The co-folding score is

∑

i

σ(Ri, Ti) +
∑

P (F )

(βT
ππ + βR

ππ + τ(Sπ , Rπ, Tπ, Tπ)),

where the term τ(Rπ , Rπ, Tπ, Tπ) is a score that takes into account compensatory
mutations and substitutions.

Given a pair of RNA sequences A and B, the local co-folding problem
is to find two substrings A[i. . . j] and B[k . . . �] such that their co-folding has
maximum score. The global co-folding problem is to find a co-folding of
A[1. . .N ] and B[1 . . .N ] of maximal score.

Sankoff’s algorithm solves the co-folding problem by DP. All of the current
algorithms that are based on SA employ variants of the same basic DP recursion.
We now demonstrate the recursions in FoldalignM [7] and Foldalign [15]. Given
two RNA sequences A and B, let S[i, j; k, �] hold the score of the best co-folding
of the subsequences A[i. . . j] and B[k . . . �].

S[i, j ; k, l]=max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) S[i+ 1, j; k, �] + γ(Ai),
(2) S[i, j; k + 1, �] + γ(Bk),
(3) S[i, j − 1; k, �] + γ(Aj),
(4) S[i, j; k, �− 1] + γ(B�),
(5) S[i+ 1, j; k + 1, �] + σ(Ai, Bk),
(6) S[i, j − 1; k, �− 1] + σ(Aj , Bl),
(7) S[i+ 1, j − 1; k, �] + βA

ij + γ(Ai) + γ(Aj)
(8) S[i, j; k + 1, �− 1] + βB

kl + γ(Bk) + γ(B�)
(9) S[i+ 1, j − 1; k +1, �− 1]+βA

ij +βB
kl +τ(Ai, Aj , Bk, Bl),

(10) max
i<m<j,k<n<l

{S[i,m; k, n] +S[m+ 1, j;n+ 1, �] }
(1)

where all entries of S are initialized to 0. Terms (1)−(4) account for gaps in one of
the two sequences. Terms (5) and (6) describe the extension of both subsequences
with an unpaired position. Terms (7) and (8) describe the extension of only one
of the subsequences with a base-pair. These two terms are conditional and are
only applied in certain contexts: term (7) can only be applied if, in the co-folding
corresponding to S[i+1, j−1; k, �], Ai+1 is base paired with Aj−1, and term (8)
can only be applied if in the co-folding corresponding to S[i, j; k+1, �− 1] Bk+1

is base paired with B�−1. The constraints on terms 7 and 8 are only necessary
in order to preserve the common branching configuration for the two aligned
structures. Term (9) describes the extension of both sequences by a base-pair
match, and Term (10) describes a branching event, as demonstrated in Figure 1.
The following two definitions are also exemplified in Figure 1.
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Definition 5 (co-terminus folding and co-folding)

A folding of a sequence si . . . sj is a co-terminus folding if si pairs with sj.
Otherwise it is called a dangling folding.

Similarly, a co-terminus co-folding over a pair of sequences A[i, j] and
B[k, �] is a co-folding in which Ai pairs with Aj and Bk pairs with B�. Otherwise
it is called a dangling co-folding.

Definition 6. A partition point in a given co-folding of A[i, j] versus B[k, �]
is an index pair (p1, p2), such that there is no co-terminus folding over Ax . . . Ay

in this co-folding, where i ≤ x ≤ p1 and p1 ≤ y ≤ j, and in addition there is
no co-terminus folding over Bz . . . Bw in this co-folding, where k ≤ z ≤ p2 and
p2 < w ≤ �.

Time and Space Complexity Analysis of SA

Let N = max{|A|, |B|}. Computing the matrix S requires O(N4) space. For
each entry S[i, j, k, l] to be computed in this matrix, the algorithm employs the
recursion of Eq. 1. The bottleneck of Eq. 1 is term (10), which considers O(N2)
competing sums of pairs. Therefore, the time complexity is O(N6).

3 Properties of RNA Co-folding

In this section we generalize the triangle inequality and polymer zeta properties,
which were used for speeding up the folding algorithm [26], to the RNA Co-
Folding problem. We start with a short review of the quadrangle inequality and
the triangle inequality in the context of speeding up dynamic programming. Let
M be an n×n matrix in which each entry M(i, j), such that i ≤ j, is computed
by the following formula:

M(i, j) = min
i<i′≤j

{M(i, i′) +M(i′ + 1, j)}

The well-known inverse quadrangle inequality property [9] is defined as follows.

Definition 7. A matrix M obeys the inverse quadrangle inequality condi-
tion iff

∀ i < i′ < j < j′ M(i, j′) ≤M(i, j) +M(i′, j′) −M(j′, j)

Both the quadrangle and the inverse quadrangle inequalities have previously
been used to speed up dynamic programming [2,9]. However, both the quad-
rangle inequality and the inverse quadrangle inequality are strong constraints
on the input behavior, and do not apply to the matrix S computed by SA.
However, a special weaker case of the classical inverse quadrangle inequality, the
triangle inequality property, which is much more common in practice in various
applications, will be extended in this paper and used to speed up RNA folding
prediction.

Definition 8. A matrix M obeys the triangle inequality property iff

∀ i < j < j′ M(i, j′) ≤ M(i, j) +M(j + 1, j′).
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The matrix S is four dimensional and therefore the standard triangle inequality
does not apply. However, we consider the following ”extended” inverse triangle
inequality property of a 4D matrix.

Definition 9. A four dimensional matrix M obeys the 4D inverse triangle
inequality property iff

∀ i < j < j′and ∀ k < � < �′

M [i, j′; k, �′] ≥ M [i, j; k, �] +M [j + 1, j′; �+ 1, �′]

The next claim is immediate from Definition 9 and Eq. 1.
Claim 1. The matrix S, as computed by Eq. 1, obeys the 4D inverse triangle
inequality.
We next turn to review the polymer zeta property in the context of RNA folding.

Definition 10. Consider the space θ of all possible foldings for a given RNA
string si . . . sj under a given folding model Λ. Let P (i, j) denote the probability
for a folding in θ to be a co-terminus folding, and let j − i = q. We say that Λ
has the polymer-zeta property if P (i, j) ≤ b/qc for some constants b, c > 0.

Experimental work has shown that RNA folding obeys the polymer-zeta prop-
erty, namely, the probability that a co-terminus folding is formed over the sub-
sequence, pairing two positions at distance q monomers apart, is P (q) = b/qc

where b = 1 and c > 1 [17,18]. This fact is explained by modeling the folding of
a polymer chain as a self-avoiding random walk (SAW) in a 2D lattice [24].

The theoretical exponent for the 2D SAW model is known to be c = 1.5 [8].
In this paper we assume that the secondary structures corresponding to SA co-
foldings obey the polymer zeta property. This assumption is supported by our
computational results on real data, described in Section 5.

4 A Candidate List Filter for Computing the Matrix S

In this section we describe an alternative approach to the computation of S,
which prunes redundant computations in the bottleneck term (10) of Eq. 1 with-
out sacrificing optimality of results. The algorithm saves operations by filling the
O(N4) matrix S in a specific order, avoiding certain computations that are sub-
optimal. For each combination of subsequence start points and end points, the
original algorithm requires O(N2) sums in term (10). Instead, our algorithm will
identify certain endpoint combinations for which a fraction of the sums is already
guaranteed not to yield the optimal score, thereby saving from the O(N2) time
needed for computing all sums.

We start by describing the order in which we traverse and fill the matrix S. Re-
cursion 1 requires the availability of both values S[i+1, j, k, �] and S[i, j, k+1, �]
during the consideration of terms (1) and (2), correspondingly, in the computa-
tion of S[i, j, k, �]. Symmetrically, it also requires the availability of S[i, j−1, k, �]
during the computation of term (3) and of S[i, j, k, �−1] during the computation
of term (4). Theorem 1, which is given later in this section, shows that, for a
given row in S, some partition points (with smaller m and n values) dominate
others (with greater m and n values) in the computation of term (10), and that
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this dominance holds for all other entries in the row such that j > m and � > n.
In order to exploit this dominance property, as well as maintain the precedence
order necessary for the application of Recursion 1, we will processes the entries of
S in decreasing i index order and in decreasing k index order first (in other words:
we compute S row-by-row, in decreasing row index order). For each index-pair
(i, k), defining a specific row in S, we will compute the entry values in increasing
� index order first and then in increasing j index order (in other words: we main-
tain a left-to-right cell-traversal order within each row). Therefore, let beam(i,k)
denote the ordered series of entries S[i, j; k, �], for j = i . . .N, � = k . . .N , first in
increasing � index, and then in increasing j index. For simplicity of presentation,
we will refer to each entry by its order of traversal within its beam, i.e. entry
S[i, j; k, �] will be denoted entry (j, �) of beam(i, k). Clearly, there are O(N2)
possible beams in S and each beam covers O(N2) entries, left-to-right.

Note that each sum in term (10) is defined by its start points (i, k), its end
points (j, �) and its partition point (m,n). However, when considering all the
O(N4) sums computed per beam, we note that a specific partition point (m,n)
participates in the sums applied per computations for all end indices (m′, n′)
such that m ≤ m′ ≤ j and n ≤ n′ ≤ �. Therefore, in this section we view
term (10) of Recursion 1 as a competition between partition points (m,n), m =
i + 1 . . . j − 1, n = k + 1 . . . � − 1 for the branching event that yields the best
score for S[i, j; k, �]. The term S[i,m; k, n] of Recursion 1.(10) will be called the
left branch, while the other term will be called the right branch. For each entry
traversed by a beam, the naive SA computes the sums corresponding to O(N2)
partition points in Recursion 1.(10). The following lemma and theorem show
that some of these partition points are dominated by others (i.e. there are other
partition points that yield equal or better score) and can thus be excluded from
the computation.

Lemma 1. Without loss of optimality, Recursion 1 can be constrained so that
the left branch in term (10) is always a co-terminus co-folding.

Naively, after constraining all left branches in term (10) to co-terminus co-foldings,
there are still O(N2) partition points that compete for the optimal score in term
(10), and thus altogether O(N4) sums of pairs computed per beam. However, the
next theorem exposes a dominance relationship among the competing partition
points, based on the 4D inverse triangle inequality property of S.

Theorem 1. Suppose S[i, j; k, �] ≤ S[i,m; k, n]+S[m + 1, j;n + 1, �] for some
i < m < j and k < n < �. Then, ∀ j′ > j, �′ > � S[i, j; k, �]+S[j+1, j′; �+1, �′] ≤
S[i,m; k, n] + S[m+ 1, j′;n+ 1, �′].

Theorem 1 exposes redundancies in the repeated computation of term (10)
throughout the beam entry traversal, redundancies which could be avoided by
maintaining a list of only those candidate partition points that are not dominated
by others.

Definition 11 (candidate). A partition point (m,n) is a candidate during
the computation of all entries (j, �) ∈ beam(i, k) such that m < j , n < �, iff

1. S[i,m; k, n] corresponds to a co-terminus co-folding.
2. S[i,m; k, n] > S[i,m′; k, n′]+S[m′+1, j;n′+1, �] ∀ i < m′ < m, k < n′ < n.
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The above definition can be applied to speed up the computation of S(i, j; k, �),
as follows: rather than considering all possible O(N2) partition points, one could
query the list that contains only partition points that satisfy the candidacy
criteria above. This can be done by further reformulating term (10) as follows,

(10) max
∀(m,n)∈candidate list:

m<j∧n<l

{ S[i,m; k, n] + S[m+ 1, j;n+ 1, �] } (2)

The pseudocode for the new algorithm, denoted fastCoFold, is given below.
Procedure ComputeBeam in Algorithm fastCoFold replaces the original term
(10) in Recursion 1 with its constrained reformulation as Eq. 2. This is imple-
mented as a candidate list that is empty at the start of each beam traversal,
and is extended throughout the left-to-right computation of the entries of the
beam, by appending to the list only those partition points that are candidates
by Definition 11.

Each partition point (m,n) is considered for candidacy once per procedure
call, when entry S[i,m; k, n] is reached by the beam traversal, and will join
the candidate list only if, at this point, the value of this entry dominates all
its preceding partition points on the list. Each entry traversed by beam(i, k) is
computed by the new algorithm as before, with the only difference being that
the maximum of term (10) is taken only over preceding pairs (m,n) from the
candidate list, as formalized in Eq. 2.

In the following theorem we assume that the 2D structures corresponding
to SA co-foldings follow the RNA 2D SAW model (see Section 3), and that
therefore the probability for a co-terminus co-folding follows the polymer-zeta
property with c > 1. This assumption is supported by the experimental results
in Section 5.

Theorem 2. Algorithm fastCoFold improves SA by a linear factor on average.

Algorithm fastCoFold :
1 for each row i := N to 1 do
2 for each row k := N to 1 do
3 call Procedure ComputeBeam(i,k);

Procedure ComputeBeam(i,k):
1 candidate list ← NULL
2 for each column j := i to N do
3 for each column l := k to N do
4 S dang[i, j; k, l] ←

maximal score among terms (1) − (6) of Eq. 1
5 S co-terminus[i, j; k, l] ←

maximal score among terms (7) − (9) of Eq. 1
6 S branch[i, j; k, l] ←

max
∀(m,n)∈candidate list:

m≤j∧n≤l

{S[i, m; k, n] + S[m + 1, j; n + 1, l]}

7 S[i, j; k, l]← max{S dang[i, j; k, l], S branch[i, j; k, l]}
8 if (S co-terminus[i, j; k, l] > S[i, j; k, l]) then
9 S[i, j; k, l] ← S co-terminus[i, j; k, l]

10 Append (j, l) to the candidate list for (i, k)
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Fig. 2. Performance of fastCoFold . (left) The average number of candidates in a list
when running fastCoFold. A ”(no gap)” next to the benchmark name indicates that
the parameter defining the allowed size difference between any two aligned subsequences
was set to 0. (right) The average ratio between the run time of SA as implemented in
Foldalign [15] and fastCoFold (without any gap constraints), for different sequence
lengths.

5 Performance Testing

To test the power of algorithm fastCoFold in practice, we implemented it as
a filter on top of the FoldAlign SA program [15] in its version that computes an
optimal solution with no heuristic shortcuts. We then compared the performance
of fastCoFold with that of the original version of FoldAlign. For this, we
generated sequences of length 25,50,75 . . ., 250. Two datasets of 50 sequences
each were generated for each length. Each pair of sequences of the same length in
the same data set were co-folded. Altogether, we performed 24,500 co-foldings.
The two sets were generated randomly according to a Markov model trained
on RNA sequences randomly chosen from complete human mRNA sequences
taken from the RefSeq database at NCBI www.ncbi.nlm.nih.gov/RefSeq. Sets
“mm1” and “mm6” were generated using a Markov model of order 1 and 6,
respectively. We ran fastCoFold on each data set and measured running times
and candidate list sizes. Two versions of FoldAlign and fastCoFold were run:
(1) allowing no gaps; (2) the full version allowing gaps of unbounded size. The
results for fastCoFold are shown in Figure 2(left). Reassuringly, in all runs the
averages grow at most linearly with the length of the sequence. Figure 2(right)
plots the average ratio between the run times of the two algorithms (both applied
without any gap constraints) as a function of sequence length for both data sets.
Runs were conducted on an Intel Xeon 2.8GHZ computer with 4GB RAM. The
overall run-time for an all-against-all co-folding of a set of 50 sequences (including
I/O time) varied from 2 seconds for the 25 bps sequences, to up to more than
12 hours for the 250 bps sequences. We suspect that the non-linear behavior
of this graph is mostly due to exhausting memory resources in the benchmark
computer.
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Note that two heuristic constraints are used by Foldalign to reduce the time
complexity. One constraint binds the total size of the allowed gaps, (j − i) −
(�− k) ≤ δ. The other constraint, which can only be applied in the case of local
alignments, binds the size of the compared subsequences j− i ≤ λ and �−k ≤ λ.
By applying both heuristics, a constrained version of SA is obtained with time
complexities of O(N5) for global alignment with gaps bounded by a constant,
and O(N4) for local alignment with both gaps and alignment sizes bounded by
a constant. We observe that when δ is set to zero (no gaps allowed), ζ converges
to a constant (see the ”no gap” plot in Figure 2.a). Thus, using fastCoFold,
one can achieve an O(N4) SA that limits only the gaps and not the size of the
alignment.
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Abstract. Protein subcellular localization is a crucial ingredient to many impor-
tant inferences about cellular processes, including prediction of protein function
and protein interactions. While many predictive computational tools have been
proposed, they tend to have complicated architectures and require many design
decisions from the developer.

Here we utilize the multiclass support vector machine (m-SVM) method to
directly solve protein subcellular localization without resorting to the common
approach of splitting the problem into several binary classification problems. We
further propose a general class of protein sequence kernels which considers all
motifs, including motifs with gaps. Instead of heuristically selecting one or a few
kernels from this family, we utilize a recent extension of SVMs that optimizes
over multiple kernels simultaneously. This way, we automatically search over
families of possible amino acid motifs.

We compare our automated approach to three other predictors on four different
datasets, and show that we perform better than the current state of the art. Further,
our method provides some insights as to which sequence motifs are most useful
for determining subcellular localization, which are in agreement with biological
reasoning. Data files, kernel matrices and open source software are available at
http://www.fml.mpg.de/raetsch/projects/protsubloc.

1 Introduction

Support vector machines (SVMs, e.g. [1]) are in widespread and highly successful use
for bioinformatics tasks. One example is the prediction of the subcellular localization
of proteins. SVMs exhibit very competitive classification performance, and they can
conveniently be adapted to the problem at hand. This is done by designing appropriate
kernel functions, which can be seen as problem-specific similarity functions between
examples. The kernel function implicitly maps examples from their input space X to
a space H of real-valued features (e.g. H = Rd, d ∈ N ∪ {∞}) via an associated
function Φ : X → H. The kernel function k provides an efficient method for implicitly
computing dot products in the feature space H via k(xi,xj) = 〈Φ(xi), Φ(xj)〉.

Many different types of features have been used for SVM-based subcellular local-
ization prediction. One popular class of features are compositions, i.e. histograms of
subsequences. The most common choice of subsequences are single amino acids. One
can also generalise this to pairs of adjacent amino acids, pairs of amino acids with

K.A. Crandall and J. Lagergren (Eds.): WABI 2008, LNBI 5251, pp. 186–197, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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one position gap between them, pairs separated by two positions, and also for longer
patterns [2]. A more widespread idea is to capture the statistics of signal peptides by
computing compositions on relevant parts of a protein separately [3,4]. In section 2, we
define kernels that generalize these ideas. Apart from compositions, further features in-
clude the search for known motifs [5,6] or PFAM domains [3], the use of PSI-BLAST
profiles [7], and the use of PSI-BLAST similarities to other sequences [8]. In some
cases, even SVMs or other classifiers are employed for feature generation or for motif
detection [5,6].

When more than one set of features have been defined and computed, the task is
to combine the evidence they yield into a single final prediction. This is often done
in complex, hand-crafted architectures that frequently consist of two (or even more)
layers of learning machines or decision systems. Instead, we utilize the novel multiclass
multiple kernel learning (MCMKL) method [9], which optimally selects kernels from
a given set and combines them into an SVM classifier (Section 3). Both are jointly
applied to protein subcellular localization prediction in Section 4.

2 Motif Composition Kernels

2.1 Amino Acid Kernel and Motif Kernel

Before we consider motifs consisting of several amino acids, we define a kernel on
individual amino acids (AAs). This will be useful as an ingredient to the more complex
motif kernel. The AA kernel takes into account pairwise similarity of amino acids.

Let A be the set of 20 amino acids. A substitution matrix M consists of a real-valued
element mab for each pair of amino acids a and b. As substitution matrices are not in
general valid kernel functions, we apply some transformations. It has been shown that
every sensible substitution matrix M implies a matrix R of amino acid substitution
probabilities via mab = 1

λ log rab

qaqb
. Here qa is the so-called background probability of

a, its relative frequency of appearance in any protein sequence. Given the constraints∑
a

∑
b rab = 1 and qa =

∑
b rab and the symmetry of both M and R, R can be

computed from M . We do so for the popular BLOSUM62 matrix [10] serving as M .
The elements of the obtained R, being substitution probabilities, are positive, and

thusR can be seen as a (complete) similarity graph between amino acids with weighted
edges. From this we derive a positive definite kernel kAA

1 on the amino acids by taking
the graph Laplacian:

kAA
1 (a, b) =

∑

c

rac − rab . (1)

Note that other choices of kernels are possible. One alternative is the diffusion kernel,
which is computed by taking the matrix exponential of a scalar multiple of R. In this
context we prefer the graph Laplacian since it does not have any parameters to be ad-
justed. We extend the AA-kernel to r-tuples of amino acids (“motifs”) by simply adding
kernel values over the components. For s, t ∈ Ar we define the motif kernel

kAA
r (s, t) =

r∑

i=1

kAA
1 (si, ti) . (2)

Note that these kernels cannot be direclty applied to variable-length protein sequences.
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2.2 Motif Compositions

Previous work has shown that the amio acid composition (AAC) of a sequence is a
useful basis for classifying its subcellular localization [11]. An advantage of this set
of features is that it is robust with respect to small errors in the sequences, as may be
caused by automated determination from genomic DNA. In subsequent work the AAC
has been generalized in two directions.

First, instead of just considering the AAC of the entire protein sequence, it was cal-
culated on different subsequences [3,6,12]. This is motivated by the fact that important
indications of localization are not global. For example, the targeting of a protein to the
mitochondrion or to the chloroplast is indicated by an N-terminal signal peptide with
specific properties (for example pH or hydrophobicity) that are reflected by the AAC.

Second, it was noted that features which represent dependencies between two or
more amino acids can increase the prediction performance. This seems plausible since
there exist a number of (rather short) known motifs that are important for subcellu-
lar targeting. Examples include the C-terminal targeting signal for microbodies (SKL),
the C-terminal endoplasmatic reticulum targeting sequence (KDEL), and the bipartite
nuclear targeting sequence (which consists of five basic amino acids, R or K, in a cer-
tain arrangement). Existing prediction methods that generalize the AAC to higher or-
der compositions do so in at least two ways: [2] and [8] use composition of pairs of
amino acids, possibly with fixed-length gaps between them; [4] consider distributions
of consecutive subsequences of length r, where a reduced size alphabet is used to avoid
combinatorial explosion of the feature space for large r.

Here we carry the generalization a bit further, by allowing for patterns consisting
of any number r of amino acids in any (fixed) positional arrangement. For example,
we could choose the frequencies of occurance of AA triplets with two positions gap
between the first two and no gap between the second two, corresponding to a pattern
(•,◦,◦,•,•). For any given pattern, we can compute the empirical distribution of corre-
sponding motifs from a given AA sequence. This is a histogram of occurrences of each
possible r-mer sequence. The example above will result in a histogram of all possible
3-mers where each sequence is represented by the counts of the occurrences of each
3-mer with the specified gap. Note that the combinatorial explosion of possible motifs
for increasing order r is not a real problem, because the number of motifs with positive
probability is bounded by the protein length, and we employ sparse representations.

2.3 Motif Composition Kernels

The feature sets defined just above are histograms, and after normalization they are
probability distributions over discrete sets. While we can use standard kernels (like the
Gaussian RBF) on these data, this would neglect the fact that they are not arbitrary
vectors, but in fact carry a special structure. Hence we use kernels that are specially
designed for probability distributions [13]. These kernels have the added benefit of al-
lowing us to model pairwise similarities between amino acids. To our knowledge, this
is the first time such kernels have been applied to protein sequence analysis.

We use the Jensen-Shannon divergence kernel (corresponding to α = 1 in [13]),
which is based on a symmetric version of the Kullback-Liebler divergence of
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information theory. Applied to histograms on patterns of order r we have

kJS
r (p, q) =

∑

s∈Ar

∑

t∈Ar

kAA
r (s, t)

(
p(s) log

p(s)
p(s) + q(t)

+ q(t) log
q(t)

p(s) + q(t)

)
,

(3)
where p and q are the r-mer histograms obtained from two sequences, and s and t run
over the amino acid motifs. For this paper, we define the kernels between amino acids
kAA(s, t) using the summed graph Laplacian defined in Equations (1) and (2).

Even using these choices, we are still left with a large number of possible patterns
(as defined in Section 2.2) to consider. As linear combinations of kernels are again valid
kernels [1], we could fix coefficients (e.g., uniform weights) and work with the resulting
weighted sum kernel. However, it can be difficult to find optimal weights.

3 Multiclass Multiple Kernel Learning

Multiple kernel learning (MKL) is a technique for optimizing kernel weights βp in a
linear combination of kernels, k(x,x′) =

∑
p βpkp(x,x′). Thereby MKL is capable of

detecting useless sets of features (noise) and eliminating the corresponding kernel (by
giving it zero weight). Consequently MKL can be useful for identifying biologically
relevant features [14,15]. In this paper we use the newly proposed multiclass extension
(see Figure 1) of MKL, called multiclass multiple kernel learning, MCMKL [9].

Multiclass multiple kernel learning com-
bines two generalizations of SVMs. The
first is to learn more complex output
spaces (including multiclass) than the
simple binary classification task by ex-
tending the kernel to also encode classes
(the horizontal arrow). The second is to
simultaneously optimize over the coeffi-
cients in a linear combination of kernels,
hence automatically weighting different
feature spaces (the vertical arrow).

Fig. 1. The approach in [9] generalizes the idea of kernel machines in two directions

While binary SVMs have a single hyperplane normal w in feature space, multiclass
SVMs (as considered here) have a different hyperplane normal wu for each class u.
Thus a trained MCMKL classifier has a separate confidence function

fu(x) =

〈

wu ,
∑

p

βpΦp(x)

〉

=
∑

i

αiu

∑

p

βpkp(xi,x) (4)

for each class u, where the latter equality derives from the expansion of the hyperplane
normals wu =

∑
i αiuΦ(xi) (due to the Representer Theorem [1] or by Lagrange
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dualization). The predicted class for a given example x will be chosen to maximize the
confidence, that is ŷ(x) = argmaxu fu(x).

Using an approach similar to that in [15], we convert the dual into an equivalent
semi-infinite linear program (SILP) formulation by a second (partial) dualization.

max
β

θ s.t. ∀α ∈ A : θ ≤ 1
2

∑

k

βk ‖wk(α)‖2 −
∑

i

αiyi ,

and

p∑

k=1

βk = 1, ∀k : 0 ≤ βk ,

(5)

where

A =

⎧
⎪⎪⎨

⎪⎪⎩
α

∣∣
∣
∣
∣
∣
∣∣

∀i : 0 ≤ αiyi ≤ C
∀i : ∀u �= yi : αiu ≤ 0
∀i :

∑
u∈Y αiu = 0

∀u ∈ Y :
∑

i αiu = 0

⎫
⎪⎪⎬

⎪⎪⎭

is the set of admissable parametrizations for the first constraint. For details on the proof
see the Supplement and [9]. For a fixed β, Equation (5) is a quadratic program (QP)
which is only slightly more complicated than a standard SVM: it solves a direct multi-
class SVM. Furthermore, for fixed α the optimization problem in β is a linear program
(LP). However, the constraint on θ has to hold for every suitable α, hence the name
(refering to the infinitely many constraints).

We follow [15] and use a column generation strategy to solve (5): Solving the QP
given by the constraints for a fixed β results in a particular α, which gives rise to
a constraint on θ which is linear in β. We alternate generating new constraints and
solving the LP with the constraints collected so far (Figure 2). This procedure is known
to converge [16,15]. For more details on this model and how it can be trained, that is how
the values of the parameters αiu and βp can be optimized, see [9]. Essentially the same
model, though with a particular arrangement of kernels and a different optimization, is
developed in [17]. Another related approach is described in [18].

4 Computational Experiments

To predict subcellular localization, we use motif kernels up to length 5 as defined in
Section 2. Note that 205 (3.2 million) different motifs of the form (•,•,•,•,•) exist;
due to the Jensen-Shannon transformation (eq. 3) the feature spaces are even infinite
dimensional. Apart from using the whole sequence, we compute the motif kernels on
different sections of the protein sequences, namely the first 15 and 60 amino acids from
the N-terminus and the 15 amino acids from the C-terminus (inspired by [6]). This
results in 4 × 2(5−1) = 64 motif kernels.

We augment the set of kernels available to the classifier by two small families based
on features which have been shown to be useful for subcellular localization [19,20]. Us-
ing the pairwise E-value of BLAST as features, we compute a linear kernel, a Gaussian
RBF kernel [1] with width 1000, and another Gaussian kernel with width 100000 from
the logarithm of the E-value of BLAST. The second additional kernel family is derived
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from phylogenetic profiles [21]. Using the results from their webserver (http://
apropos.icmb.utexas.edu/plex/) as features, we compute a linear kernel
and a Gaussian kernel of width 300. The Gaussian kernel widths were selected from
a coarse grid by running MCMKL separately on each of the two kernel families; the
range of the grid was inspired by the distribution of pairwise Euclidean distances of the
feature vectors.

In total, we thus consider 69 candidate kernels. This renders manual selection and
weighting tedious or even impossible, and thus calls for MKL. As in standard binary
single-kernel SVMs, there is a parameter “C” in the MCMKL method to tune the regu-
larization. We normalize each kernel such that settingC = 1 will at least be a reasonable
order of magnitute (refer to [9] for details).

The subsequent protocol for all our experiments is as follows:

– Ten random splits into 80% training and 20% test data are prepared.
– For each training set, the parameterC is chosen using 3-fold cross validation on the

training set only. We search over a grid of valuesC = {1/27, 1/9, 1/3, 1, 3, 9, 27}.
For all tasks, the best C is chosen by maximizing the average F1 score on the
validation (hold out) part of the training set. The F1 score is the harmonic mean
of precision p and recall r, f1 = (2 ∗ p ∗ r)/(p + r). For more details, see the
Supplement.

– Using the selected C, we train MCMKL on the full training set and predict the
labels of the test set.

To compare with existing methods, we compute several different measures of perfor-
mance. We assess the proposed an two different datasets, for which results with other
methods are reported in the literature. The first is the data set used for training and evalu-
ating TargetP [22]. The second dataset is a database of bacterial proteins, PSORTdb [5].

Fig. 2. The SILP approach to MKL training alternates between solving an LP for β and a QP for
α until convergence [9,15]

http://
apropos.icmb.utexas.edu/plex/
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Table 1. Summary of comparative Protein Subcellular Localization results

dataset performance performance [%] of competing method,
name measure MCMKL competitor reference, year

TargetP plant avg. MCC 89.9 ± 1.1 86.0 TargetLoc [6], 2006
TargetP nonplant avg. MCC 89.7 ± 0.8 86.6 TargetLoc [6], 2006
PSORT+, 15.0% out avg. Prec/Recall 95.5 / 94.7 95.9 / 81.3 PSORTb [5], 2004
PSORT-, 13.3% out avg. Prec/Recall 96.4 / 96.3 95.8 / 82.6 PSORTb [5], 2004
PSORT- avg. recall 91.3 90.0 CELLO II [20], 2006

A summary of the overall performance is shown in Table 1. Details of performance are
available in the Supplement.1

4.1 Comparison on TargetP Dataset

The original plant dataset of TargetP [22] is divided into five classes: chloroplast (ch),
mitochondria (mi), secretory pathway (SP), cytoplasm (cy), and nucleus (nuc). How-
ever, in many reported results, cy and nuc are fused into a single class “other” (OT),
and hence we do the same to enable direct comparison. Non-plant is similar, but lacks
the chloroplasts. Each of the 10 random splits contains 21 cross validation optimiza-
tions (3-fold cross-validation to select from 7 values of C), with an additional larger
optimization at the end. For the 3-class problem plant, the computation time for each
split is roughly 10 hours on a 2.4Ghz AMD64 machine.

The results in [22] are reported in terms of Matthew’s correlation coefficient (MCC).
As can be seen in Table 1, the MCC values obtained with our proposed method are
significantly better. Details for each class are shown in the Supplement. The features
most often selected for classification as seen in Figures 3(c) and 3(d) are the kernels
computed from BLAST E-values as well as phylogenetic information. The lists of all
kernels selected are in the Supplement. From Table 2, we see the motif kernels which
are most frequently selected. The motif kernel with pattern (•,◦,◦,◦,◦) only measures
the simple amino acid composition. However, this encodes important global properties
like protein mass or charge; it is thus reassuring to see that it gets selected. However, ob-
serve that several long patterns (•,◦,◦,◦,•) and (•,•,◦,◦,•) are selected in the N-terminus
region, indicating the presence of long meaningful subsequences in that region.

4.2 Comparison on PSORTdb Dataset

We also run computations on sequences and localizations of singly localized proteins
in bacteria obtained from PSORTdb [5] and compare the performance to the predic-
tion tool PSORTb v2.0 [5]. PSORTb v2.0 can withhold a prediction when it is uncer-
tainabout the localization. From their supplementary website we estimate the

1 The Supplement is freely available for download as protsubloc-wabi08-supp.pdf at
http://www.fml.tuebingen.mpg.de/raetsch/projects/protsubloc

http://www.fml.tuebingen.mpg.de/raetsch/projects/protsubloc
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(a) Average F1 score for PSORT+. (b) Average F1 score for PSORT-

(c) Average F1 score for plant (d) Average F1 score for nonplant

Fig. 3. Average F1 score for various features. The horizontal axis indexes the 69 kernels. The two
phylogenetic profile kernels and the three BLAST E-value kernels are on the left. The following
four blocks are the motif kernels on: the whole sequence, the 15 AAs at the C-terminus, the 15
and 60 AAs at the N-terminus. In each subfigure, the bars in the lower panel display the average
optimized kernel weight. The bars in the upper panels show the accuracy obtained from using
each kernel just by itself. The dashed black line shows the performance when all the kernels are
equally weighted (after appropriate normalization). The solid blue line shows the result of our
method for comparison.

proportion of “unknown” predictions to be 15.0% for the Gram positive and 13.3% for
Gram negative bacteria. We estimate probabilistic outputs from our method by applying
the logistic transformation, that is p̂(y|x) = exp fy(x)∑

u exp fu(x) to the SVM confidences. To
obtain comparable figures, we discard the same fractions of most uncertain predictions,
i.e. those with the lowest p̂(ŷ(x)|x). The mean and standard deviations on this reduced
test set are reported in Table 1 in the comparison with PSORTb.

In 2004, PSORTb claimed to be the most precise bacterial localization prediction
tool available [5]. However, as the results in Table 1 suggest, our method performs
dramatically better. The performance assessments for various measures and for each
class, which are reported in the Supplement, confirm this. The numbers show that our
method in general matches the high precision of PSORTb and that we have extremely
high recall levels, resulting in significantly better F1 scores for most localizations in
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Table 2. Sequence motif kernels which have been selected at least 8 times out of the 10 splits for
each dataset

times mean βk kernel (PSORT+)
selected

10 6.23% motif (•,◦,◦,◦,◦) on [1, ∞]
10 3.75% motif (•,◦,•,◦,•) on [1, ∞]
9 2.24% motif (•,◦,•,•,•) on [1, 60]

10 1.32% motif (•,◦,◦,◦,•) on [1, 15]
8 0.53% motif (•,◦,◦,◦,◦) on [1, 15]

times mean βk kernel (plant)
selected

10 5.50% motif (•,◦,◦,◦,◦) on [1, 15]
10 4.68% motif (•,◦,◦,◦,•) on [1, 15]
10 3.48% motif (•,◦,◦,◦,◦) on [1, 60]
8 3.17% motif (•,•,◦,◦,•) on [1, 60]
9 2.56% motif (•,◦,◦,◦,◦) on [1, ∞]

times mean βk kernel (PSORT-)
selected

10 5.04% motif (•,◦,◦,◦,◦) on [1, ∞]
10 1.97% motif (•,◦,◦,•,◦) on [1, ∞]
9 1.57% motif (•,•,◦,◦,◦) on [1, ∞]

10 1.51% motif (•,◦,◦,◦,◦) on [1, 60]
10 1.14% motif (•,◦,◦,◦,◦) on [1, 15]
10 0.82% motif (•,◦,◦,◦,•) on [−15]

times mean βk kernel (nonplant)
selected

9 4.48% motif (•,◦,◦,◦,◦) on [1, 15]
10 3.23% motif (•,◦,◦,•,•) on [1, 15]
9 2.32% motif (•,◦,◦,◦,◦) on [1, ∞]
9 2.17% motif (•,◦,◦,◦,◦) on [1, 60]
8 1.92% motif (•,◦,◦,•,◦) on [1, 60]
9 1.48% motif (•,•,•,◦,◦) on [1, ∞]
8 0.94% motif (•,◦,•,◦,◦) on [1, 15]

both PSORT datasets. We also show in our Supplement that we are still competitive
with PSORTb, even when predicting on all sequences (as opposed to withholding when
unsure). Our method further compares favorably to CELLO II [20], for which results
on the Gram negative bacterial protein set are published.

Similar to the motifs selected in the plant dataset, the BLAST E-values and phyloge-
netic profiles are important (Figure 3(a) and 3(b)). Note also that in all datasets, both the
BLAST E-value as well as the log transformed version turn out to be useful for discrim-
ination. This demonstrates one of the major dilemmas of using only one fixed kernel, as
it may be possible that some transformation of the features may improve classification
accuracy. Note that in Table 2 the motif (•,◦,◦,◦,•) near the C-terminus, [−15,∞], has
very little weight, and all other motifs are shorter. Indeed, in other experiments (results
not shown), MCMKL with motifs up to length 4 performs equally well.

5 Discussion

First we note that our proposed method improves on established and state of the art
methods for predicting protein subcellular localization. This is the case with respect to
various figures of merit, which also demonstrates the robustness of our method. The
success off our approach comes despite the fact that its design required little time and
care: in contrast to complex competing methods, we only need to provide a sufficient
set of candidate feature spaces (i.e. kernels) and do not have to worry about which one
of them is best. In fact, Figures 3(a)-3(d) show that there is no single best kernel for all
localization prediction tasks, and that kernel combinations can improve on each single
kernel.



An Automated Combination of Kernels 195

In our setting, the simple unweighted sum of all considered kernels reliably yields
high accuracy. Note that this depends on the normalization of the kernels; while we use a
heuristic, but justified scaling scheme, no theoretically optimal task-independent scaling
method is known. However, we successfully use modern machine learning methods,
specifically multiclass multiple kernel learning (MCMKL), to learn an optimal kernel
weighting (the values βp) for the given classification problem. Indeed the MCMKL
reweighting consistently outperforms the plain normalization: it reduces the error (1 -
score) by roughly 20%. We even used MCMKL to adjust real-valued kernel parameters
by selecting them from a pre-specified coarse grid.

Note that the performance of the kernels taken by themselves is not a good indication
of their weights in the optimized combination. For example in the plant experiments,
motif kernels are best individually, but BLAST and phylogeny kernels obtain higher
weights. We speculate that correlating information of the kernels is one reason for this:
instead of choosing very similar kernels, MCMKL chooses a mixture of kernels that
provide complementary information. Thus one should include as many diverse forms
of information as possible. However, the weights of the kernels also depend on their
prior scaling (normalization), and more machine learning research is necessary to fully
understand this issue.

In addition to improving the accuracy, MCMKL also helps to understand the trained
classifier. For example, in the plant data, the motif kernels on N-terminal subsequences
(both length 15 and 60) provide the most informative feature spaces. The reason for this
is most likely that they are best suited to detect the chloroplast and mitochondria tran-
sit peptides which are known to be in the N-terminal. For bacteria, which do not have
organelles and corresponding signal peptides, the composition of the entire protein is
more useful; probably because it conveys properties like hydrophobicity and charge.
However, the BLAST kernels, which can pick up protein structure via remote homol-
ogy, are assigned even higher weights. For the bacterial datasets, the BLAST kernels
obtain more weight and perform better individually than the phylogenetic kernels. Phy-
logenetic profiles have only been shown to work well with organellar proteins [23], and
the evidence in Figures 3(c) and 3(d) shows that they can help (slightly) for eukaryotes.

Since signal peptides are usually longer than 5 amino acids, our motifs may not
capture all the information. However, one would expect that BLAST scores and phylo-
genetic profiles capture this information. This is reflected by the high weight given to
these kernels (Figure 3). Note however that the localization signal may be distributed
across the amino acid sequence, and only brought together by protein folding – the so
called signal patches. If each component of the signal patches is relatively short, then
this can be captured by our motif kernels.

While MKL did successfully identify relevant kernels (e.g., motif patterns), in this
work we did not narrow it down to the specific features (i.e., the motifs). A promis-
ing goal for future work is to determine which particular motifs are most important;
this can be modeled as an MKL task (cf. [15]). The idea of this approach is to repre-
sent the kernel by a sum of subkernels and to learn a weight (importance) for each of
them. However, it seems that the imposed sparsity of the solution, while useful on the
level of one kernel for each motif pattern, can be harmful at finer resolutions [15], and
alternative approaches are more successful [24].
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6 Summary and Outlook

We propose a general family of histogram-based motif kernels for amino acid se-
quences. We further propose to optimize over sets of kernels using a modern multiclass
multiple kernel learning method, MCMKL [9]. We demonstrate that this approach out-
performs the current state of the art in protein subcellular localization on four datasets.
This high accuracy is already achieved with only using information from the amino acid
sequence, while our method offers a principled way of integrating other data types. A
promising example would be information mined from texts like paper abstracts [25].
Further, by selecting and weighting kernels, MCMKL yields interpretable results and
may aid in getting insight into biological mechanisms.

Finally, the MCMKL framework [9] is very general and could be beneficial for a
variety of (multiclass) bioinformatics prediction problems. For example, in this work
we have only considered the case of singly located proteins, but in general proteins
may exist in several possible locations in the cell. MCMKL does allow learning with
multiple classes for each data point (each label y would be the corresponding subset of
classes), and it will be interesting to see its performance on multiply located proteins.
Application to more different prediction tasks is facilitated by the large and increas-
ing set of existing sequence and structure kernels. MCMKL also allows to guide the
learning process with different types of prior knowledge, including the relationships of
classes to each other (by a kernel on the classes, c.f. [9]). These exciting opportunities
remain to be explored.
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Abstract. Large-scale sequencing projects have led to a vast amount
of protein sequences, which have to be assigned to functional categories.
Currently, profile hidden markov models and kernel-based machine learn-
ing methods provide the most accurate results for protein classification.
However, the prediction of new sequences with these approaches is com-
putationally expensive. We present an approach for fast scoring of pro-
tein sequences by means of feature-based protein sequence representation
and multi-class multi-label machine learning techniques. Using the Pfam
database, we show that our method provides high computational effi-
ciency and that the approach is well-suitable for pre-filtering of large
sequence sets.

Keywords: protein classification, large-scale, multi-class, multi-label,
Pfam, homology search, metagenomics, target set reduction, protein
function prediction, machine learning.

1 Introduction

In the last decade, the number of known protein sequences has rapidly in-
creased, mainly due to several genome sequencing projects. Currently, large-scale
shotgun sequencing as used in metagenomics produces large amounts of protein
sequences with unknown phylogenetic origin [1]. For further analysis of these pro-
tein sequences, they have to be classified in terms of structural and functional
properties. Because experimental determination is time-consuming and expen-
sive, several computational methods have been proposed for protein function
prediction and protein classification [2,3].

Widely-used methods for functional assignment are based on annotation
transfer from homologues by means of pairwise sequence alignments. Here, heuris-
tic approaches such as BLAST [4] are used to search well-annotated databases
for similar protein sequences. However, these methods require the evaluation of
all pairwise alignments, which is computationally demanding for large sets of se-
quences. Furthermore, pairwise alignment methods often fail when sequence sim-
ilarity is below 60% residue identity. Finally, this kind of annotation transfer may
be erroneous and may further lead to propagation of erroneous annotation [2,3].
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Another widely-used approach for protein classification is based on models
that statistically represent properties of a set of related sequences, e.g. protein
families. For example, the Pfam database [5] provides a comprehensive collection
of manually curated multiple alignments of protein domain families. Each family
is represented by a Profile Hidden Markov Model (PHMM, [6]) that has been
constructed from the multiple alignment. The PHMMs can be used to classify
new sequences into the Pfam categorization scheme, e.g. with the HMMER pack-
age (http://hmmer.janelia.org/). The threshold for assignment of a sequence
to a particular model in Pfam is chosen to detect only verified family members.
Because of the resulting highly specific models and the amount of manually ver-
ified annotation, Pfam and HMMER provide a highly valuable combination for
automatic functional assignment of protein sequences. However, PHMMs may
fail in the detection of remote homologues, i.e. homologues with a sequence simi-
larity below 30% residue identity [7]. A major drawback of the PHMM approach
is that for classification, every candidate sequence has to be aligned to all mod-
els. This is computationally demanding and several methods have been proposed
to tackle this problem, e.g. by means of parallelization or hardware-acceleration
[8]. Another approach is to use a “pre-filter”, i.e. a computationally more ef-
ficient algorithm that reduces the set of candidate sequences or models (e.g.
http://www.microbesonline.org/fasthmm/). For example, the Pfam website
(http://pfam.janelia.org/help) provides a perl script that uses the BLAST
method for pre-filtering. According to the author of the script, a speed-up factor
of 10 may be achieved, accompanied by a slightly reduced sensitivity.

As an alternative, computationally more efficient alignment-free methods
could be used as pre-filters. Recently, several feature-based machine learning
approaches have been proposed for protein classification (for an overview see
[9,10,11]) and detection of remote homologues [12,13,14,15]. Many of these dis-
criminative methods have been shown to provide state-of-the-art classification
performance. Therefore, feature-based approaches in general could be used for
pre-filtering, too. However, so far the evaluation of these methods has been lim-
ited to detection of members of a particular protein family or problems with few
exemplary categories and a relatively small number of sequences.

In that context, alignment-based kernel methods have been shown to out-
perform other approaches for remote homology detection [16,17]. In comparison
with fast feature-based methods, kernel-based approaches are computationally
expensive [15] and thus unsuitable for large-scale classification problems. As a
consequence, the application of kernel-based methods has been limited to evalua-
tion on small-scale setups, e.g. on the widely-used setup described in [7] including
54 classes (superfamilies).

If the classification problem does involve many functional categories, discrimi-
native methods require a multi-class evaluation setup. The most common way to
handle a multi-class problem is to split it up into isolated two-class one-against-
all problems in order to utilize binary classification methods [18,19]. However,
for large-scale multi-class problems, discriminative training and hyperparame-
ter search for several thousand classifiers is computationally demanding. To our

http://hmmer.janelia.org/
http://www.microbesonline.org/fasthmm/
http://pfam.janelia.org/help
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knowledge, the application of discriminative approaches in computational biol-
ogy has been limited to small-scale setups so far.

In protein classification, an example may belong to several functional cat-
egories, e.g. multi-domain proteins consist of several functional regions. This
gives rise to so-called “multi-label” learning problems. Multi-class multi-label
machine learning methods have first been applied within the research field of
text categorization [20]. Recently, multi-label methods have also been applied in
bioinformatics, for example for analysis of gene expression profiles [21,22], pro-
tein subcellular localization prediction [23] and also for protein classification [24].
Usually, multi-label classification can be splitted into a ranking of examples
which provides a correctly ordered list of categories and a set size prediction
method, which determines the number of relevant classes.

In this work, we present an approach for ranking of protein sequences that is
based on feature-based protein sequence representation methods and multi-class
multi-label machine learning techniques. Based on an evaluation setup involving
a large part of the Pfam database, we show that our approach can be used as a
computationally efficient pre-filter for protein function prediction methods.

2 Methods

2.1 Machine Learning Approach

In order to realize a multi-label ranking scheme within a highly imbalanced
large-scale setup with M = 4423 classes, we implemented an extension of the
so-called “regularized least squares classifiers” [25]. For computational efficiency,
we utilize a linear one-against-all approach with simultaneous training of all M
discriminants.

For ranking of a sequence, we compute the corresponding feature vector x ∈
R

d and the linear discriminant of class i based on the weight vector wi to obtain
a score from the corresponding scalar product:

si(x) = wT
i x (1)

where the upper T indicates vector (matrix) transposition. The sorting of all M
scores si in descending order then produces the ranks of the classes, i.e. the first
element in the sorted list with the highest score indicates the highest rank (M).

For the training of M discriminants we use N feature vectors xj and the
corresponding binary indicator vectors yj for representation of the labels. The
i-th dimension of yj only has a non-zero value (= 1) if sequence j is associated
with class i. The discriminant weight vectors wi are represented as columns in
the d×M weight matrix W and the inverse class sizes are collected in the bal-
ancing vector b = [1/n1, . . . , 1/nM ]T with ni counting the number of sequences
associated with class i. For optimization of the weight matrix we minimize the
regularized squared error criterion:
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E(W) =
N∑

j=1

bTyj‖WTxj − yj‖2 + λ‖W‖2
F (2)

where ‖·‖F denotes the Frobenius norm. Minimization of the above cost function
tries to approximate the indicator vectors by means of the discriminant scores.
Thus, the training forces a discriminant to produce relatively high scores only if
examples are associated with the corresponding class. In addition, the λ-weighted
regularization term bounds the squared norm of the weight vectors. A suitable
value of λ then provides a compromise between a low approximation error and
good generalization. The balancing vector b down-weights the contribution of
examples, which are exclusively associated with overrepresented classes.

Now, consider the N feature vectors xj as column vectors in a d×N training
matrix X and the binary indicator vectors yj as columns in an M × N label
matrix Y. Using the N×N diagonal matrix D = diag(YT b) of example-specific
balancing weights, the minimizer of the regularized error can be written as:

Ŵ = (XDXT + λI)−1XDYT (3)

where I is the d×d identity matrix. The above solution requires inversion of a d×d
matrix, which practically limits the approach to feature spaces with a moderate
dimensionality. However, on current computers, spaces with approximately 104

dimensions can be used without problems. For ranking of a set of test examples
represented by columns of a matrix Xtest, the M × N score matrix S of all
examples can be efficiently computed using the matrix product

S = ŴTXtest . (4)

The j-th column of S contains all M discriminant scores of the j-th example.

2.2 Protein Sequence Representation

In order to apply our machine learning approach to the protein ranking problem,
we have to represent all amino acid sequences in a common vector space. Here,
we describe two exemplary protein sequence representation methods that have
been used for protein classification and remote homology detection and which
can be associated with an interpretable feature space of moderate dimensionality.

k-mer Spectrum. The k-mer Spectrum of a sequence S counts the occurrences
of all k-length words in S and can be represented as a vector in the k-mer
Spectrum feature space. According to the number of different k-mers, for protein
sequences this feature space comprises 20k dimensions. The dimension associated
with a particular k-mer K counts the occurrences of K in a sequence.

For large values of k, the k-mer Spectrum feature space becomes very large.
For example, the trimer (k = 3) Spectrum feature space comprises a moderate
number of 8000 dimensions, whereas the feature space for k = 5 consists of
3.2∗106 dimensions. On the other hand, the algorithmic complexity to calculate
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the feature space representative x of a sequence of length L is only O(L). The
k-mer Spectrum for small values of k is a time and memory efficient protein
sequence representation method and thus provides a suitable vector space for
large-scale machine learning problems. In order to provide comparability with
respect to sequences of different length, the feature vectors are normalized to
Euclidean unit length.

For k = 1 and k = 2, the k-mer Spectrum corresponds to the amino acid com-
position and dipeptide composition of a sequence, respectively. Both methods
have been successfully applied to protein classification [10,11]. In comparative
studies, the dipeptide composition has been shown to perform similarly to other
feature-based sequence representation methods [9]. The k-mer Spectrum has also
been used for remote homology detection in [12], where it has been shown to
outperform unsupervised approaches.

Oligomer Distance Histograms. In [15], Oligomer Distance Histograms
(ODH) have been introduced for protein sequence representation and remote
homology detection, where they have been shown to outperform the k-mer Spec-
trum. In the distance-based feature space, for each pair of k-mers (oligomers)
there exists a specific histogram counting the occurrences of that pair at cer-
tain distances. For the set of M = 20k different k-mers, the feature vector of a
sequence S comprises M2 distance histogram vectors. Considering a maximum
sequence length Lmax, each histogram vector contains the counts of two k-mers
at distances d = 0, . . . , Lmax−k+1. For k > 1 and large Lmax the ODH represen-
tation gives rise to a high dimensional feature space. For example, the feature
space for k = 3 (trimers) and a maximum sequence length of Lmax = 1000
comprises about 6.4 ∗ 1010 dimensions. In this case, our feature-based machine
learning approach cannot be applied.

On the other hand, in [15] the best detection performance has been achieved
for k = 1 (monomers). Furthermore, sequences with less than Lmax residues
do not contribute to feature space dimensions associated with this distance.
Therefore, a restriction of the maximum distance provides a suitable means
to reduce the feature space dimensionality of ODHs. As an example, the ODH
feature space for monomer pairs with a maximum distance ofDmax = 10 residues
comprises only 4020 dimensions, which is about half the number of dimensions
required for the feature space associated with the trimer Spectrum. In that way,
the ODH representation allows a fine-grained control of the feature space size,
which linearly depends on the maximum distance. Note that the distance-based
feature space for monomers incorporates the amino acid composition (D = 0),
the dipeptide composition (D = 1) and trimer counts according to a central
mismatch (D = 2).

The systematic evaluation of all pairwise k-mers in a sequence of length L to
calculate the feature space representative x is of algorithmic complexity O(L2).
If the maximum distance is restricted to Dmax, the algorithmic complexity re-
duces to O(DmaxL). As the Spectrum feature vectors, ODH feature vectors are
normalized to unit length.
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2.3 Performance Measures

For evaluation of our approach, we use different performance indices. First, we
measure the so-called coverage to analyze the ranking performance [22]. We
define the minimal set size of a test example as the cardinality of the minimal
set that includes all ranks above or equal to the minimal rank of a true category.
Then, the coverage is defined as the average minimal set size over all examples
reduced by 1. This measure is well-suited to evaluate our approach in terms of a
pre-filtering for target set reduction. In this case, the coverage reflects the number
of functional categories that have to be considered in a subsequent function
prediction stage. Therefore, a smaller coverage allows a higher possible speed-up
of the prediction. The coverage measure is widely used in multi-label learning
problems. Besides the “classical” mean coverage, we also consider the median
coverage, i.e. the median of the above minimal set size over all test examples. In
addition, we use the so-called one-error to measure the ranking performance. The
one-error evaluates how often on average the top-ranked category is not a true
class of a particular example. Therefore, a one-error value of 0 is desirable, which
means that all examples would have a correct functional category assignment for
the highest rank.

In addition, we measure the average area under ROC and ROC50 curve
over all families to measure the detection performance w.r.t. potential family
members. The ROC curve reflects the dependency of the the false positive rate
(1−specificity) on the true positive rate (sensitivity) w.r.t. to variation of the
classification threshold. The ROC50 score is the area under curve up to 50 false
positives. ROC scores are particularly useful for analysis of rank-ordered lists
and imbalanced problems [26] and are widely used in the evaluation of remote
homology detection performance [7,15,16].

3 Experimental Setup

In order to evaluate our approach, we developed a test setup based on the Pfam
database [5]. Pfam is a widely-used, comprehensive and well-annotated collection
of protein domain families. Pfam 22.0 (released in July 2007) consists of 9318
families in the Pfam-A section, i.e. the manually curated part of the database.
Each family comprises a seed alignment, which contains selected representative
sequences of the family. For our setup, we use these seed sequences, which in
total add up to 217445 examples in Pfam 22.0.

The seed alignments of Pfam are based on protein domains, i.e. functional
regions of protein sequences. When functional categories have to be assigned to
unannotated sequences, the boundaries of these domains are unknown. There-
fore, we consider the complete protein sequences associated with the domains.
Furthermore, multi-domain proteins include several domains, which may real-
ize different functions. Therefore, multi-domain proteins may be associated with
several Pfam families. In our setup, the label indicator vector of a protein se-
quence refers to all its relevant classes, i.e. Pfam families that have a significant
match to this sequence.
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For training of the discriminant weight vectors we use the regularized least
squares approach described in section “Methods”. For this purpose, we calcu-
lated the feature vectors for the k-mer Spectrum method using k = 1, 2, 3 and
for the ODH method using Dmax = 10, 20, 30. Higher values for k and Dmax

result in feature spaces that complicate the training due to high dimensionality.
We evaluated different values of the regularization parameter λ = {10m|m =
−4,−3, . . . , 4} by means of 5-fold cross-validation. In order to provide a suffi-
ciently high number of training and test examples for each class, we only con-
sider Pfam families with at least 10 different seed sequences. In total, our setup
consists of 147003 protein sequences from 4423 Pfam families. The size of the
families varies from a minimum of 10 to a maximum of 1670 example sequences
and thus gives rise to a highly imbalanced classification problem.

All methods were implemented using the Matlab R© programming language.
Files containing sequences and labels associated with our evaluation setup can
be downloaded from http://www.gobics.de/thomas/data/pfam/

4 Results and Discussion

The results of our performance evaluation are summarized in table 1. As a main
result, the ODH method clearly outperforms the k-mer Spectrum in terms of
all performance indices. In particular, the coverage (columns 3 and 4) and the
one-error values (column 5) are substantially better for the ODH method. In
terms of ROC/ROC50 values (columns 6 and 7), all methods except for the
monomer Spectrum show a good performance. On the other hand, the coverage
and one-error values are more suitable measures for the utility of a particular
method for target set reduction on multi-label problems (see also section “Per-
formance Measures”). Although not tested here, we expect the combination of
Pfam PHMMs and HMMER to perfectly classify the sequences. This would im-
plicate a value of 1 for ROC/ROC50 values and 0 for the one-error. The mean
coverage is expected to correspond to the average number of true categories over
all examples reduced by 1, which is approximately 0.6 in our test setup.

The results in table 1 also show that for the ODH method the highest
maximum distance Dmax = 30 produces better results than smaller maximum
distances. Similarly, higher values of k for the Spectrum method provide bet-
ter detection performance and less coverage. Note that the ODH method for
Dmax = 10 performs better than the Spectrum method for k = 3, although
the feature space associated with the ODH method comprises only about half
the number of dimensions as compared to that of the Spectrum method. This
indicates that the choice of a suitable feature mapping is more important than
just a high dimensionality of the feature space. In [15], the ODH method was in-
troduced without restriction of the maximum distance and clearly outperformed
the Spectrum method on a small-scale benchmark setup for protein remote ho-
mology detection. Our results in this work indicate that the introduction of
a maximum distance for the ODH method is a suitable means for application
of this method to large-scale problems. In column 8, the best regularization

http://www.gobics.de/thomas/data/pfam/
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Table 1. Performance results of different methods. The first column indicates the
method, where “Spectrum” refers to the k-mer Spectrum and “ODH” refers to
Oligomer Distance Histograms using k = 1 with maximal distance Dmax (see also
section “Methods”). Column 2 denotes the dimensionality of the feature space associ-
ated with a particular method. Columns 3-7 show the different performance indices as
described in section “Methods” in terms of average values over 5 cross-validation test
folds. “ROC” and “ROC50” refer to the average area under ROC/ROC50 curve over
all families with at least 10 positive test examples in each fold. In column 8, the best
regularization parameter λ associated with a particular method is shown.

Method d Coverage One-error ROC ROC50 best λ
mean median

Spectrum (k = 1) 20 452.4 243.8 0.95 0.925 0.046 0.001

Spectrum (k = 2) 420 214.9 65.0 0.85 0.978 0.563 0.001

Spectrum (k = 3) 8000 116.7 4.8 0.57 0.987 0.827 1

ODH (Dmax = 10) 4020 65.3 3.8 0.55 0.993 0.840 0.001

ODH (Dmax = 20) 8020 47.6 2.0 0.43 0.995 0.881 0.001

ODH (Dmax = 30) 12020 41.6 1.2 0.37 0.995 0.894 0.01

parameter λ w.r.t the coverage over all 5 cross-validation test folds is shown.
The values indicate that the regularization parameter has to be chosen larger
for feature spaces with higher dimensionality. On the other hand, our results
only showed a small variation of the performance for a broad range of λ-values.

Column 3 of table 1 shows that on average only about 42 of 4423 families
are required to detect all functional categories of a particular test example with
the ODH method for maximum distance Dmax = 30. If the approach is used
as a pre-filter for protein function prediction, this corresponds to a speed-up
factor of 106. This is one order of magnitude higher than the speed-up that is
usually achieved with alignment-based methods. Furthermore, the one-error for
the ODH method with Dmax = 30 indicates that for 63% of the test examples
the class associated with the highest rank implies the correct assignment to a
functional category.

However, the total speed-up also depends on the computational efficiency
of the target set reduction method. Therefore, we measured the running time
for classification with different methods on an AMD Opteron 870 workstation.
Table 2 shows that the ranking with the monomer Spectrum (k = 1) took 585
seconds for all categories and 147003 examples. As another example, the ranking
with the ODH method using Dmax = 30 took 3380 seconds. On average, 23 ms
are required for ranking of a single sequence with this more sensitive method as
compared with the monomer Spectrum method. This is about 1270 times faster
than functional assignment of a single sequence with the HMMER package us-
ing 4423 models on the same hardware (on average 33 seconds per sequence). In
general, the feature extraction process and the calculation of the matrix prod-
uct can easily be parallelized, which further reduces the required running time.
Therefore, our approach provides a suitable means for target set reduction on
huge sequence collections, which are routinely analyzed in metagenomics [1,27].
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Table 2. Runtime comparison of different methods for sequence scoring. The first
column denotes the method, whereby “Spectrum” refers to the k-mer Spectrum and
“ODH” refers to Oligomer Distance Histograms using k = 1. Column 2 denotes the
dimensionality of the feature space associated with a particular method. Columns 3
and 4 show the runtime in seconds for feature extraction and matrix multiplication
during the scoring process for all 147003 sequences (see also section “Machine Learning
Approach”). Columns 5 and 6 denote the total runtime in seconds for scoring and the
average runtime in milliseconds for scoring of a single sequence, respectively.

Method d tfeatExt (s) tmatMult (s) ttotal (s) tavg (ms)

Spectrum (k = 1) 20 575 10 585 4.0

Spectrum (k = 2) 400 622 80 702 4.8

Spectrum (k = 3) 8000 643 1500 2143 14.6

ODH (Dmax = 10) 4020 1027 800 1827 12.4

ODH (Dmax = 20) 8020 1082 1525 2607 17.7

ODH (Dmax = 30) 12020 1130 2250 3380 23.0

Table 1 shows that mean and median coverage of a particular method differ
significantly. This results from the shape of the minimal set size distribution for
the test examples. Figure 1 shows the dependency of the corresponding fraction
of sequences on a given minimal set size in terms of curve plots for different
methods. It is clearly visible that for the ODH method a large number of test
examples show a low minimal set size, while only few examples show a very
high minimal set size. If one is willing to accept a significant loss of sensitivity,
e.g. for a coarse estimation of functional profiles in metagenomics, the target set
reduction allows a considerable speed-up.

We also analyzed whether the performance of our approach critically depends
on the family size or on the number of associated classes of an example. There-
fore, we calculated the correlation coefficient of the minimal set size and the
number of true categories of a particular example using the results from the
ODH method with maximum distance Dmax = 30. The low correlation coef-
ficient of −0.0031 indicates that examples with many functional categories do
not lead to higher minimal set sizes than examples with few categories. Since
only multi-domain proteins have more than one assigned category, this result
indicates that our approach is suitable for ranking of single-domain and multi-
domain proteins, as well. Furthermore, we computed the correlation coefficients
between ROC/ROC50 values and the family size. The low correlation values
(ROC: 0.1288, ROC50: 0.046) indicate that the performance does not critically
depend on family size. Note that we measured the ROC/ROC50 performance
only for families with at least 10 positive test examples in each test fold.

In this work, we limited the evaluation setup to Pfam families with at least 10
different seed sequences. In practice, our approach is also suitable to be used with
the complete Pfam database for learning of 9318 family-specific discriminants.
As a draft study, we evaluated Pfam families with 2 to 9 seed sequences using
2-fold cross-validation. The corresponding data set consists of 4750 families with
22944 sequences in total. Here, the ODH method using Dmax = 30 achieves a
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Fig. 1. Coverage curves for different methods. The coverage curve of a particular
method plots the relative number of examples that have a minimal set size below
a given threshold. Only minimal set size values up to 442 (10% of the classes) are
shown.

mean coverage of 32.4 and a one-error of 0.26. The performance of the Spectrum
method for k = 3 is inferior, resulting in a mean coverage of 94.6 and a one-error
of 0.54. A direct comparison to the results in table 1 is not possible, because
the average number of true categories over all example sequences is much lower
for the small families (1.07 instead of 1.6). Furthermore, the results of the two
cross-validation folds show large differences. One possible reason is that for the
smallest families only one example sequence is used for training and testing. In
practice, sequences from the Pfam full alignments [5] could be used to extend
the training set of small families.

In contrast to PHMMs, feature-based approaches allow the interpretation of
discriminative sequence features that have been learned from the data. Therefore,
these methods are not only useful for target set reduction, but they could also be
used for analysis of biologically meaningful properties of the sequences. In [15]
we showed how discriminative features of the ODH method could be interpreted
in a remote homology detection context.

5 Conclusion

In this work, we presented an approach for large-scale ranking of protein se-
quences for function prediction. Our method is based on explicit representation
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of sequences in feature spaces that allow fast scoring and efficient training of dis-
criminants. We developed a setup for evaluation of multi-label machine learning
techniques, which is based on a large part of the Pfam database. We showed that
our approach can be used for fast target set reduction in terms of a ranking of
functional categories. The reduced target set can be analyzed with highly accu-
rate but computationally more expensive methods. As a main result, we showed
that the ranking performance critically depends on the choice of a suitable fea-
ture space for representation of protein sequences.

Although our approach worked well for most of the Pfam families and se-
quences, for some categories the performance was very low. In this work, we
showed that the detection performance does not critically depend on family
size. First results also indicate that functional categories can be predicted for
multi-domain proteins and single-domain proteins with similar accuracy. A de-
tailled analysis of the reasons for the low performance in a few cases will be
part of future work. In order to use our approach as a stand-alone protein
classification method, our ranking has to be extended by a so-called “set size
predictor” [21], which estimates the number of relevant functional categories
from the discriminant scores. For this purpose, we are currently investigating
several set size prediction methods.

Acknowledgments. This work was partially supported by the Federal Ministry
of Research and Education project “MediGRID” (BMBF 01AK803G).
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Abstract. Human adaptive immune response relies on the recognition
of short peptides through proteins of the major histocompatibility com-
plex (MHC). MHC class II molecules are responsible for the recognition
of antigens external to a cell. Understanding their specificity is an im-
portant step in the design of peptide-based vaccines. The high degree
of polymorphism in MHC class II makes the prediction of peptides that
bind (and then usually cause an immune response) a challenging task.
Typically, these predictions rely on machine learning methods, thus a
sufficient amount of data points is required. Due to the scarcity of data,
currently there are reliable prediction models only for about 7% of all
known alleles available.

We show how to transform the problem of MHC class II binding pep-
tide prediction into a well-studied machine learning problem called mul-
tiple instance learning. For alleles with sufficient data, we show how to
build a well-performing predictor using standard kernels for multiple in-
stance learning. Furthermore, we introduce a new method for training a
classifier of an allele without the necessity for binding allele data of the
target allele. Instead, we use binding peptide data from other alleles and
similarities between the structures of the MHC class II alleles to guide
the learning process. This allows for the first time constructing predic-
tors for about two thirds of all known MHC class II alleles. The average
performance of these predictors on 14 test alleles is 0.71, measured as
area under the ROC curve.

Availability: The methods are integrated into the EpiToolKit frame-
work for which there exists a webserver at http://www.epitoolkit.org/
mhciimulti

1 Introduction

The adaptive immune system is one of the most advanced and most important
systems in humans. It can direct immune responses according to various kinds of
invading microorgansims and even recognize and destroy tumor cells [1]. A very
important part of this system are T-cells. These cells are involved in a cascade
which results in a large production of very specific antibodies. Furthermore,
activated T-killer cells are able to induce apoptosis in deficient cells. One of the
first steps in activating T-cells is to present short peptides to them. There are two
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major complexes, which present peptides at the cell membrane. They are called
major histocompatibility complex class I (MHCI) and major histocompatibility
complex class II (MHCII). MHCI presents peptides which originate from proteins
produced within cell. MHCII presents peptides originating from the outside of
the cell. There are various different MHCII alleles which have very specific sets
of peptides to which they can bind. At present there are more than 750 unique
MHCII alleles known [2] (regarded on the protein sequence level), but for less
than 3 % of them there exist sufficient experimental data from binding studies [3].
Since every human has at most eight different MHCII alleles, it is very important
for vaccine design to know which peptides can bind to the particular alleles. A
good predictor for MHC binding can reduce the number of possible peptides and
therefore saves a lot of time – and money-consuming experiments.

In contrast to MHCI, the binding clefts of the MHCII are open. This is why
the length of the binding peptides varies significantly (from 8 to more than 30
amino acids). Nevertheless, analyses of MHCII structures revealed that the part
of the peptide responsible for binding to MHCII is usually nine amino acids long.
This part is also called binding core of the peptide. For most of the experimen-
tal data it is unknown which part of the peptide actually is the binding core,
which complicates the problem of MHCII peptide binding prediction compared
to MHCI peptide binding prediction. The binding clefts of MHCI are closed and
the binding peptides have a length between eight and ten. There are various
methods for MHCII binding peptide prediction for alleles for which there ex-
ists sufficient experimental data. Some of these models are based on positional
scoring matrices [4,5,6,7,8,9], others use Gibbs samplers [10] or hidden Markov
models [11]. Further works have used the ant colony search strategy [12], arti-
ficial neural networks [13], partial least squares [14] or support vector machines
with standard kernel functions [15, 16, 17]. Very recently Wang et al. [18] com-
bined several of these predictors to build a new predictor. There have also been
efforts to improve binding prediction by using structural information [19].

To the best of our knowledge all but two of the models for MHCII binding
peptide prediction are based on experimental data for the particular alleles for
which the predictions are for. The models of Singh et al. [8] and Zaitlen et al. [19]
are the only methods which were shown to predict binding for alleles without
training on them. However, the model by Singh et al. is only applicable for
51 alleles [18] which is about 7% of all known alleles and Zaitlen et al. require
three-dimensional structures of a similar allele to perform this kind of predictions
which limits the number of alleles accessible through the method. Since there is
very few experimental data, it is desirable to be able to predict peptide binding
for alleles, for which few or no experimental data is available. This is what our
method is able to do. Similar ideas have also recently been introduced for MHCI
predictions, although based on different machine learning techniques and for a far
simpler problem (MHCI peptides have more or less identical lengths) [20,21,22].

We use similarities of the binding pockets of the alleles to build classifiers for
alleles, which do not need experimental data of the target allele to reach good
prediction performance. The similarities are incorporated into the predictions
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using a specialized kernel function, which is based on the normalized set kernel
by Gärtner et al. [23]. To do so, the problem is transformed into a multiple
instance learning problem [24]. The classifier is trained using the kernel function
and Support Vector Regression (SVR) [25]. Using this method we are for the
first time able to build predictors for about two thirds of all MHCII alleles.
Assessment of their quality in blind predictions for alleles with known data
reveals that the predictions are of sufficient quality for use in vaccine design.
Furthermore, we show that our transformation of the problem into the multiple
instance learning problem enables us to build classifiers which are as good or
even better as the best methods for MHCII binding peptide prediction.

2 Methods

2.1 Multiple Instance Learning

In standard supervised binary classification, the associated label for every in-
stance out of the sets of training samples is known. Every instance can be rep-
resented as (xi, yi) where xi ∈ X and yi ∈ {−1, 1}. We define the set of positive
training examples as Sp = {(x, y)|x ∈ X ∧y = 1} and the set of negative training
examples as Sn = {(x, y)|x ∈ X ∧ y = −1}. In multiple instance learning [24]
not every label yi for every xi is known. The positive label is only known for
sets of instances which are called bags. For every bag Xi with label +1 it is
only known that at least one instance of Xi is associated with label +1. Every
instance in a negative bag is associated with label −1. More formally this means
that the set of positive bags is Xp = {(Xi, 1)|∃xj ∈ Xi : (xj , yj) ∈ Sp}. The
set of negative bags is Xn = {(Xi,−1)|∀xj ∈ Xi : (xj , yj) ∈ Sn}. The multiple
instance learning problem is to find the best predictor for predicting the labels
of bags.

Kernels for multiple instance learning were introduced by Gärtner et al. [23]
in 2002. The normalized set kernel by Gärtner et al. [23] is the following:

k(X,X ′) :=

∑

x∈X,x′∈X′
kX (x, x′)

fnorm(X)fnorm(X ′)
(1)

with kX being a kernel on X . Gärtner et al. [23] evaluated different normaliza-
tion functions fnorm and showed that averaging (fnorm(X) = #X) and feature-
space normalization (fnorm(X) =

√ ∑

x∈X,x′∈X

kX (x, x′)) perform equally well on

the studied datasets. Preliminary results on our data also suggested that both
methods perform equally well (data not shown). Therefore, in the following only
normalization by feature space normalization was considered.

Gärtner et al. [23] hypothesized in their paper, that the kernel could also be
used for multiple instance regression [26,27]. In this setting every bag Xi has a
label yi ∈ IR.
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2.2 Multiple Instance Learning for MHCII Prediction

Since for most of known MHCII binders the binding core is unknown, one cannot
directly use the binding core for training a learning machine. Since previous work
on MHCII prediction [28,9] suggests that only aliphatic (I, L, M, V) and aromatic
(F, W, Y) amino acids in position one are common, we represent every putative
binder by a bag containing all 9-mers (putative binding cores) with aromatic or
aliphatic amino acid at position one. By this, we transformed the data directly
into a multiple instance learning problem in which every positive bag has at least
one positive binding core. All negative bags just contain false binding cores. For-
mally this means that every putative binder si of lengthm is represented by a bag
(Xi, yi).
Xi = {x|x = sik,k+1,...,k+8 ∧ k ≥ 1 ∧ k + 8 ≤ m ∧ x1 ∈ {F, I,L,M,V,W,Y}}

are all putative binding cores and yi is the measured binding affinity of si. For
less than 3% of the putative binders of the benchmark set Xi was empty (see also
Section 3.1).

In this work we introduce two classifiers for MHCII binding peptide prediction.
The first classifier is just trained on parts of the data of the allele for which the
predictions should be made. This classifier is called Csingle in the following. It will
be shown that the performance of Csingle is comparable to the best methods in the
field. This classifier is particularly useful for alleles, for which sufficient binding
data is available.

The second classifier is not trained on data of the allele for which the predictions
should be made. Instead, data from other alleles is combined in a way which re-
flects the similarity of the binding pockets of the target allele to the binding pock-
ets of the other alleles. This classifier will be calledCmulti in the following. Because
no data of the allele, for which the predictions should be made is needed, one can
build classifiers for alleles with little or no experimentally determined binders.

In this work, we use the normalized set kernel with an RBF kernel for Csingle.
Furthermore, we introduce a new kernel based on the normalized set kernel for
Cmulti. Throughout the paper we use RBF kernel or kRBF for the Gaussian RBF

kernel with the kernel function k(x, x′) = exp− ‖x−x′‖2

2σ2 .

2.3 Feature Encoding

Venkatarajan and Braun [29] evaluated in 2001 different physicochemical prop-
erties of amino acids. They performed a dimension reduction on a large set of
features from the AAindex database [30] and showed that every amino acid can
be represented adequately by a five-dimensional feature vector. This encoding
was already used in a recent study on MHC binding by Hertz et al. [31] and will
be called PCA encoding in the following.

2.4 MHCII Binding Peptide Prediction for Alleles with Sufficient
Data

For alleles, for which enough experimental data is available, we build predictors
which are just trained on binding peptide data for the particular allele. In this
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setting we use the normalized set kernel [23] with kX being the RBF kernel. X
is the set of all putative binding cores. This means that X is the set of every
possible nine amino acid long peptide sequence in PCA encoding for which the
first amino acid is aliphatic or aromatic. This means that every input vector
has length 45. The classifier is trained using this kernel function together with
ν-SVR [25].

2.5 Combining Allele Information with Peptide Information

Representation of MHCII Alleles. Sturniolo et al. [9] showed in 1999 that
there is a correspondence between the structures of the binding pockets of the
MHCII and the polymorphic residues in this region. They defined certain po-
sitions inside the amino acid sequence of the allele sequences and showed that
alleles having the same residues at these positions also have similar binding
pocket structures. This was done for several alleles and binding pockets for pep-
tide positions 1, 4, 6, 7 and 9 because these positions are assumed to have the
most influence on binding [9].

To represent each allele, we encoded every polymorphic residue of the pockets
1, 4, 6, 7, and 9 by PCA encoding and calculated a mean of the encoded vectors
for every pocket position. This resulted in a 25 × 1 dimensional vector p =(
pT
1 , p

T
4 , p

T
6 , p

T
7 , p

T
9

)T for every allele, which is called pocket profile vector in the
following. To get the polymorphic residues for alleles that were not defined by
Sturniolo et al. [9], we used the HLA-DRB1, HLA-DRB3, HLA-DRB4 and HLA-
DRB5 alignments of the IMGT/HLA database [2] (release 2.18.0).

We computed the sequence logo [32] for an alignment of all HLA-DRB1,
HLA-DRB3, HLA-DRB4 and HLA-DRB5 alleles. An extract of this can be
seen in Fig. 1. The whole sequence logo can be found on our webpage (http://
www-bs.informatik.uni-tuebingen.de/Publications/Materials/WABI08MHCII).
Since the alignments show very good conservation for alleles HLA-DRB1, HLA-
DRB3, HLA-DRB4 and HLA-DRB5 at the non-pocket positions, we assume that
this procedure is applicable at least for these HLA-DRB alleles which constitute
525 of all 765 unique MHCII alleles (on the protein sequence level), currently
contained in the IMGT/HLA database [2].

Similarity Function of MHCII Binding Pockets. Our goal was to get
a similarity measure between pocket positions of alleles between zero (totally
different) and two (identical). Since we have the pocket profile vectors, a natural
idea is to take the Pearson correlation between the corresponding positions of
the pocket. To get a similarity measure we added one which means that the
similarities are in the interval [0, 2]. The resulting similarity measure for each
pocket i = 1, 4, 6, 7, 9 is then

simi(p, p′) := Pearson(pi, p
′
i) + 1. (2)

This function was used in our work to measure similarity between the binding
pockets corresponding to peptide position 1, 4, 6, 7 and 9.

http://
www-bs.informatik.uni-tuebingen.de/Publications/Materials/WABI08MHCII
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Combining Allele Pocket Profiles with Peptide Information. For MHCI
binding peptide prediction there have been two approaches for learning binding
prediction models for alleles which do not need experimental data for the target
allele [21, 22]. Both methods measure the similarity of the alleles only for the
whole allele. This means that one allele would also have a large similarity if
most of the binding pockets are similar and only one or two positions are not.
This model is particularly dangerous if the position, which is very different is
crucial for the binding process in the target allele. Therefore, we use similarities
between the binding pockets directly in our kernel function to be able to account
for these cases, too.

We now define the kernel kpw−RBF, which is defined on A×X . A is the set of
all possible pocket profile vectors and X is again the set of all possible nine amino
acid long peptide sequences in PCA encoding. Let p =

(
pT
1 , p

T
4 , p

T
6 , p

T
7 , p

T
9

)T be
the pocket profile vector of peptide sequence s. Let x = (xT

1 , x
T
2 , ..., x

T
9 )T be a

putative binding core of sequence s, for which every xi is the PCA encoding
of the amino acid at position i in the putative binding core. Let p′ and x′ be
defined analogously for peptide sequence s′. In Csingle the inner kernel function
of the normalized set kernel is a standard RBF kernel:

kRBF(x, x′) = exp− ‖x−x′‖2

2σ2 . (3)

As mentioned above, the kernel function should be able to weight positions
according to the similarity of the alleles. Therefore, we designed a positionally-
weighted RBF-kernel:

kpw−RBF((p, x), (p′, x′)) = exp−w1×‖x1−x′
1‖2+w2×‖x2−x′

2‖2+...+w9×‖x9−x′
9‖2

2σ2 . (4)

In our setting the weights are determined using the sim function, which was
mentioned above:

wi := simi(p, p′) ∀i = 1, 4, 6, 7, 9 (5)

Since the other positions are not as important for binding, we set the weights
w2, w3, w5 and w8 (which correspond to peptide positions 2, 3, 5 and 8) to 0.5.

In this work kpw−RBF is used as the inner kernel function of the normalized
set kernel [23] in conjunction with ν-SVR [25] for Cmulti. Similar to [33] one can
show that kpw−RBF is positive definite using the Schoenberg Theorem [34] since

w1 × ‖x1 − x′1‖2 + w2 × ‖x2 − x′2‖2 + ...+ w9 × ‖x9 − x′9‖2 =
w1 × ‖x′1 − x1‖2 + w2 × ‖x′2 − x2‖2 + ...+ w9 × ‖x′9 − x9‖2 (6)

and
w1 × ‖x1 − x′1‖2 + w2 × ‖x2 − x′2‖2 + ...+ w9 × ‖x9 − x′9‖2 = 0 ∀x = x′. (7)

Training Choices for Leave-Allele-out Predictions. We designed a pro-
cedure to get the largest possible training set, in which the similarities of the
target allele to the other alleles are reflected in the number of training samples
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Fig. 1. This figure shows the conservation of an excerpt of the alignments of all HLA-
DRB1, HLA-DRB3, HLA-DRB4 and HLA-DRB5 alleles from the IMGT/HLA data-
base [2]. The arrows pointing at positions of the sequence logo [32] are polymorphic
residues, which are used for the binding pocket profile vectors.

from the particular alleles. The idea is that training samples from more similar
alleles should enable better predictions for the target allele than distant ones.
To compute similarities between alleles, we calculated the Pearson correlation
between alleles using the pocket profile vectors. Let pi and pj be the pocket pro-
file vectors of alleles i and j. The similarity between these alleles is the Pearson
correlation of pi and pj scaled linearly to [0, 1]. This value is called allelesim i,j

in the following. For a particular target allele, the procedure is the following:
Let j be the target allele. For every allele i �= j with ni peptide sequences,

we compute the maximal number ti such that allelesimi,j × ti ≤ ni. Then we
choose the minimum of all ti, which is now called t∗. For every allele i �= j, we
then choose t∗ × allelesimi,j peptide sequences from allele i and assign them to
the training set.

Since for some alleles there exist more than t∗×allelesimi,j peptides we wanted
to make sure that we do not miss important peptides. Therefore, we chose the
t∗ × allelesimi,j peptides which had the biggest kernel value to any of the target
sequences. The intuition behind is that training samples with a very low kernel
value to the target sequences will influence the prediction less than other samples
since the output label is a linear combination of kernel functions [25].

3 Results

In this section we compare our classifiers to other state-of-the-art methods. In
particular we compare our performance to the results of Wang et al. [18] who
performed a large scale evaluation on MHC class II prediction methods. On
their benchmark dataset we show that our predictor Csingle, which is trained
on parts of the target allele dataset, performs equally well or better than all
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other methods. Furthermore, we show that Cmulti can predict binding for alleles
without using any training data of the target allele and achieves performance
which is comparable to the best predictors which are trained on binding data of
the target allele.

3.1 Data

We show the performance of our classifiers on an MHCII benchmark dataset,
introduced by Wang et al. [18]. This dataset contains peptide binding data for
14 human alleles as well as three mouse alleles which were measured in the
laboratory of Wang et al. [18]. Binding affinities of the benchmark dataset were
given in IC50 values. The smaller the IC50 value, the better is the binder. There
are many peptides with very high IC50 values. Since the cutoff for binders is
between 500 and 1000nM there is not a big difference between a non-binder
with IC50 value of 10,000 or 20,000nM. Therefore, we transformed the IC50

values like Nielsen et al. [5]. Let ai be the binding affinity of peptide i. The log-
transformed binding affinity a′i is defined as a′i := 1 − log50000 (ai). Like Nielsen
et al. [5], we set the a′i < 0 to zero. In the following, the dataset will be called
Dbenchmark. Like Wang et al. [18], we consider peptides as binder, if their IC50

value is smaller than 1000nM [18] (a′i > 0.3616).
Peptide sequences, for which no binding core could be found (aliphatic or

aromatic amino acid at position one) were excluded from all evaluations. This
was the case for less than 3% of peptides (270 out of all 9478). Out of these
peptides only 64 peptides are considered as binder (a′i > 0.3616). Since the
whole dataset contains 6475 binders in total, this means that our assumption
that every binder has to have a binding core with an aliphatic or aromatic amino
acid at position one just misses 64 out of 6475 binders which is under 1%.

3.2 Performance of Csingle

Wang et al. [18] recently compared the performances of state-of-the-art predic-
tors for MHCII binding. We show a comparison to the top four methods of their
evaluation. Wang et al. [18] measured the performance of the ARB method [4] by
ten-fold cross-validation. The performance of the other methods was evaluated
using available webservers. The authors justified this procedure by the fact that
they measured the performance on unpublished data, which had been measured
in their labs. Therefore, it is unlikely that any of these methods (except the ARB
method) was trained on parts of this dataset. To compare the performance of
Csingle to this evaluation, we performed a ten-fold cross-validation using para-
meter ranges C ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}, ν ∈ {0.2 ∗ 1.4i|i = 1, 2, ..., 5}
and σ ∈ {0.0625, 0.125, 0.25, ..., 16}. Table 1 shows that Csingle outperforms all
other single methods. The column ”Consensus” corresponds to the consensus
approach of Wang et al. [18] in which the best three classifiers for the par-
ticular allele are combined to achieve higher accuracy. One could assume that
with Csingle as one of these three predictors the accuracy will improve, since the
performance of Csingle is comparable to the consensus approach. All performances
were measured in area under the ROC curve.
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3.3 Performance of Leave-Allele-out Cmulti and Csupertype

To show, that Cmulti performs well although it is not trained on any data of
the target allele, we conducted the following experiment. The training sam-
ples are chosen as described in the ”Methods” section. We then performed a
five-fold cross-validation on the training set to determine the best hyperpa-
rameters. For this C ∈ {0.01, 0.1, 1, 10}, ν ∈ {0.2 ∗ 1.4i|i = 1, 2, ..., 5} and
σ ∈ {0.0625, 0.125, 0.25, ..., 4}. With the best hyperparameters of the cross-
validation we trained our classifiers with the whole training set. We then mea-
sured the area under the ROC curve performance on the target allele. To show
that the kpw−RBF kernel function of Cmulti really improves the MHCII binding
prediction if data from various alleles is combined we introduced Csupertype. This
method is trained like Cmulti but uses the same kernel function as Csingle.

It can be seen in Table 1 that the classifier Cmulti performs quite well on
Dbenchmark although it was not trained on any binding data of the target allele.
One can hypothesize that this performance could also be reached for other alleles,
for which no binding data is available, since we did not use any data of the target
allele. Cmulti performs even better than Csingle on some alleles which shows that
the method is not just valuable for new alleles but also for predictions for alleles
for which there exists binding data. The performance of Csupertype is worse than
the performance of Cmulti. This suggests that our kernel function, which takes the
similarities of the alleles into account, is very valuable for this kind of predictions.
The fact that Csupertype still has a good performance could be due to the fact
that there exist many promiscuous peptides for MHCII [35].

3.4 Implementation

All methods were implemented in C++. We used LIBSVM [36] for support vector
learning. The predictions for all alleles are integrated into EpiToolKit [37] for
which there exists a webserver at http://www.epitoolkit.org/mhciimulti.

4 Discussion

The proposed method is a novel approach for predicting MHC class II binding
peptides for alleles lacking experimental data and thus opens up new alleys
for the design of peptide-based therapeutic or prophylactic vaccines. Obviously,
a conclusive validation of predicitons for alleles without experimental data is
difficult. The leave-one-allele out predictions presented here indicate, however,
that the method performs very well. One could object that restricting the first
amino acid of the binding core to aromatic and aliphatic amino acids is a strong
assumption. Nevertheless, if one selects all putative binding peptides of the 9478
peptide sequences in Dbenchmark for which no binding core with an aromatic or
aliphatic residue at position one can be found, a classifier which just predicts
0 (non-binder) would have 0.7630 classification rate on these peptides. In other
words, only for 270 peptides or 2.85% out of the 9478 peptides no binding core

http://www.epitoolkit.org/mhciimulti
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Table 1. Performance comparison of Csingle, Cmulti and Csupertype to the best four
methods presented in [18]. The Cmulti and the Csupertype classifier are just trained on
data of different alleles than the target allele. The performance of Csingle and ARB are
measured by ten-fold cross validation. All other methods are trained on binding data
of the target allele which was not contained in the benchmark dataset.

MHCII type # peptides ARB PROPRED SMM-align Consensus Csingle Cmulti Csupertype

DRB1*0101 3882 0.76 0.74 0.77 0.79 0.81 0.58 0.75
DRB1*0301 502 0.66 0.65 0.69 0.72 0.73 0.64 0.65
DRB1*0401 512 0.67 0.69 0.68 0.69 0.67 0.76 0.64
DRB1*0404 449 0.72 0.79 0.75 0.80 0.79 0.73 0.73
DRB1*0405 457 0.67 0.75 0.69 0.72 0.82 0.73 0.78
DRB1*0701 505 0.69 0.78 0.78 0.83 0.82 0.85 0.78
DRB1*0802 245 0.74 0.77 0.75 0.82 0.77 0.78 0.77
DRB1*0901 412 0.62 - 0.66 0.68 0.64 0.62 0.62
DRB1*1101 520 0.73 0.80 0.81 0.80 0.85 0.84 0.68
DRB1*1302 289 0.79 0.58 0.69 0.73 0.74 0.69 0.62
DRB1*1501 520 0.70 0.72 0.74 0.72 0.72 0.67 0.76
DRB3*0101 420 0.59 - 0.68 - 0.73 0.51 0.47
DRB4*0101 245 0.74 - 0.71 0.74 0.80 0.64 0.71
DRB5*0101 520 0.70 0.79 0.75 0.79 0.81 0.87 0.69

Mean 0.71 0.73 0.73 0.76 0.76 0.71 0.69

with aromatic or aliphatic residue at position one can be found and only 64
out of these are considered as binders (log-transformed binding affinity greater
than 0.3616). This is why we think that the heuristic is very well applicable and
reflects a general property for MHCII binding which is also supported by previous
work [28, 9]. Moreover, the restriction to these binding cores is one of the key
parts of this work because if one selected all 9-mers as binding cores this would
add very much noise to the bags and the positional weighting of the binding core
would not have a big effect since nearly every residue of a peptide (except the
residues at the ends) would be at every position in one of the instances in the
bag. Ultimately, only experimental testing or structure-based studies will reveal
whether some of the rarer allels might deviate from this behavior on the first
position.
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18. Wang, P., Sidney, J., Dow, C., Mothé, B., Sette, A., Peters, B.: A systematic as-
sessment of MHC class II peptide binding predictions and evaluation of a consensus
approach. PLoS Comput. Biol. 4(4), 1000048 (2008)

19. Zaitlen, N., Reyes-Gomez, M., Heckerman, D., Jojic, N.: Shift-invariant adaptive
double threading: Learning MHC II - peptide binding. In: Speed, T., Huang, H.
(eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 181–195. Springer, Heidelberg
(2007)

20. DeLuca, D., Khattab, B., Blasczyk, R.: A modular concept of hla for comprehensive
peptide binding prediction. Immunogenetics 59(1), 25–35 (2007)

21. Jacob, L., Vert, J.P.: Efficient peptide-MHC-I binding prediction for alleles with
few known binders. Bioinformatics 24(3), 358–366 (2008)



Multiple Instance Learning Allows MHC Class II Epitope Predictions 221

22. Nielsen, M., Lundegaard, C., Blicher, T., Lamberth, K., Harndahl, M., Justesen,
S., Røder, G., Peters, B., Sette, A., Lund, O., Buus, S.: NetMHCpan, a method
for quantitative predictions of peptide binding to any HLA-A and -B locus protein
of known sequence. PLoS ONE 2(8), 796 (2007)
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problem with axis-parallel rectangles. Artif. Intell. 89(1-2), 31–71 (1997)

25. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector
algorithms. Neural Comput. 12(5), 1207–1245 (2000)

26. Dooly, D.R., Zhang, Q., Goldman, S.A., Amar, R.A.: Multiple-instance learning of
real-valued data. J. Machine Learn Res. 3, 651–678 (2002)

27. Ray, S., Page, D.: Multiple instance regression. In: ICML 2001: Proceedings of the
Eighteenth International Conference on Machine Learning, pp. 425–432. Morgan
Kaufmann Publishers Inc, San Francisco (2001)

28. Hammer, J., Belunis, C., Bolin, D., Papadopoulos, J., Walsky, R., Higelin, J.,
Danho, W., Sinigaglia, F., Nagy, Z.A.: High-affinity binding of short peptides to
major histocompatibility complex class II molecules by anchor combinations. Proc.
Natl. Acad. Sci. USA 91(10), 4456–4460 (1994)

29. Venkatarajan, M.S., Braun, W.: New quantitative descriptors of amino acids based
on multidimensional scaling of a large number of physical-chemical properties.
Journal of Molecular Modeling 7(12), 445–453 (2001)

30. Kawashima, S., Ogata, H., Kanehisa, M.: AAindex: Amino acid index database.
Nucleic Acids Res. 27(1), 368–369 (1999)

31. Hertz, T., Yanover, C.: Pepdist: A new framework for protein-peptide binding
prediction based on learning peptide distance functions. BMC Bioinformatics 7
(suppl. 1), S3 (2006)

32. Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E.: WebLogo: a sequence logo
generator. Genome Res. 14(6), 1188–1190 (2004)

33. Li, H., Jiang, T.: A class of edit kernels for SVMs to predict translation initiation
sites in eukaryotic mRNAs. In: RECOMB, pp. 262–271 (2004)

34. Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Amer. Math.
Soc. 44(3), 522–536 (1938)

35. Consogno, G., Manici, S., Facchinetti, V., Bachi, A., Hammer, J., et al.: Identifi-
cation of immunodominant regions among promiscuous HLA-DR-restricted CD4+
T-cell epitopes on the tumor antigen MAGE-3. Blood 101(3), 1038–1044 (2003)

36. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. (2001),
http://www.csie.ntu.edu.tw/∼cjlin/libsvm

37. Feldhahn, M., Thiel, P., Schuler, M.M., Hillen, N., Stevanović, S., et al.:
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Abstract. We consider a graph orientation problem arising in the study
of biological networks. Given an undirected graph and a list of ordered
source-target pairs, the goal is to orient the graph so that a maximum
number of pairs will admit a directed path from the source to the tar-
get. We show that the problem is NP-hard and hard to approximate to
within a constant ratio. We then study restrictions of the problem to
various graph classes, and provide an O(log n) approximation algorithm
for the general case. We show that this algorithm achieves very tight
approximation ratios in practice and is able to infer edge directions with
high accuracy on both simulated and real network data.

1 Introduction

One of the major roles of protein-protein interaction (PPI) networks is to trans-
mit signals within the cell in response to genetic and environmental cues. Tech-
nologies for measuring PPIs (see, e.g., [3]) do not provide information on the
direction in which the signal flows. It is thus a great challenge to orient a given
network by combining causal information on cellular events. One such source of
information is perturbation experiments in which a gene is perturbed and as a
result other genes change their expression levels.

In graph theoretic terms, one is given an undirected graph and a list of cause-
effect pairs. The goal is to direct the edges of the graph, assigning a single
direction to each edge, so that a maximum number of pairs admit a directed
path from the cause to the effect. In fact, by contracting cycles in the graph
one can easily reduce the problem to that of orienting a tree. Hakimi et al. [4]
studied a restricted version of the problem where the list of vertex pairs includes
all possible pairs, giving a quadratic time algorithm for it. Another variant of
the problem was studied in [1] and [5], where rather than maximizing the total
number of pairs, an algorithm was given to decide if one can satisfy all given
pairs.

In this paper we study the resulting tree orientation problem. We prove that it
is NP-hard and hard to approximate to within a constant ratio, study restrictions
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of the problem to various graph classes, and provide an O(log n) approximation
algorithm for the general case, where n is the size of the tree. We show that this
algorithm achieves tight approximation ratios in practice and is able to infer
edge directions with high accuracy on both simulated and real network data.

The paper is organized as follows: In Section 2 the graph orientation prob-
lem is presented and its complexity is analyzed. Section 3 provides exact and
approximate algorithms for restrictions of the problem, and an approximation
algorithm for the general case. Biological applications of the latter algorithm are
described in Section 4. For lack of space, some proofs are shortened or omitted.

2 Problem Definition

Let G = (V,E) be an undirected graph. An orientation G of G is a directed
graph obtained from G by orienting each edge (u, v) ∈ E either from u to v
or from v to u. Let P ⊆ V × V be a set of ordered source-target pairs. A pair
(a, b) ∈ P is satisfied by a given orientation G of G if there is a directed path
from a to b in G. Our goal is to find an orientation G of G that simultaneously
satisfies as many pairs from P as possible.

If the graph G contains a cycle C, then it is easy to see that, for any set P ,
there is an optimal orientation of G in which all the edges of C are oriented in
the same direction and, consequently, all pairs that connect two vertices in C
are satisfied. The original problem can therefore be solved by contracting the
cycle C and then solving an equivalent problem on the contracted graph. Thus,
the interesting case is when the graph G is a tree.

Definition 1 Maximum Tree Orientation (MTO): Given an undirected tree
T and a set P of ordered pairs of vertices, find an orientation of the edges of T
that maximizes the number of pairs in P that are satisfied.

In the decision version of the problem, the input includes T, P , and an integer
k ≤ |P |, and the question is whether the edges can be directed so that at least k
pairs in P are satisfied. As we show next, the problem is NP-hard even when T
is a star or a binary tree.

Theorem 1. MTO is NP-complete.

Proof. The problem is clearly in NP. We show NP-hardness by reduction from
Max Di-Cut [8], which is defined as follows: given a directed graph G = (V,E)
and an integer k ≤ |E|, is there a cut A ⊂ V such that there are at least k edges
e = (u, v), with u ∈ A and v ∈ V \A.

We map an instance (G, k) of Max Di-Cut into an instance (T = (V ′, E′), P,
k) of MTO in the following way: V ′ = V ∪{O}, E′ = {(v,O) : v ∈ V } and P = E.

Given a cut A ⊂ V with k crossing edges, it is easy to see that each pair
corresponding to such an edge can be satisfied: for all v ∈ A direct the edge
(v,O) toward O, and direct all other edges away from O.

On the other hand, suppose that we have directed the edges of T so that k
pairs are satisfied. Note that if (u, v) is satisfied then u is directed toward O,
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Fig. 1. An example of the reduction from MAX-2-SAT to MTO. The input 2-SAT
formula is (x1 ∨ ¬x2) ∧ (x3 ∨ ¬x2); x1 and x3 are assigned a True value, and x2 is
assigned a False value.

and no pair (v′, u) can be satisfied. Therefore, the cut defined by A = {u |
(u,O) is directed toward O}, is of size k.

Corollary 1. MTO is NP-complete even on stars.

As Max Di-Cut is hard to approximate to within a factor of 11
12 � 0.9166

(H̊astad [6]), and the reduction is approximation preserving, we conclude:

Corollary 2. It is NP-hard to approximate MTO to within a factor of 11
12 .

Theorem 2. MTO is NP-complete on binary trees.

Proof. The problem is clearly in NP. We prove NP-hardness by a reduction
from Max 2-SAT, where each clause is assumed to contain exactly two literals.
Suppose f is a 2-SAT formula with variables x1, ..., xn. Create a binary tree T
with subtrees Ts and Tt, so that Ts has a leaf si, and Tt has a leaf ti for each
variable xi. Create two child nodes st

i and sf
i for each si, and tti and tfi for each

ti (see Figure 1).
To complete the reduction we need to specify a set of pairs to be satisfied.

This set will be composed of two subsets: P1, forcing the choice of a truth value
for each variable, and P2, relating these truth values to the clauses in f .

The truth value of a variable will be set by forcing a directed path between
st

i and sf
i . If the path is directed from st

i to sf
i we will interpret it as assigning
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the value True to xi; if it is directed the other way, we will associate the value
False with xi. To this end, for every variable xi participating in ni clauses, we
will add 3ni pairs (st

i, s
f
i ) and 3ni pairs (sf

i , s
t
i) to P1. Similarly, we will force a

path between tti and tfi , indicating the truth value of xi, but this time a path
from tti to tfi will indicate False and the opposite direction will indicate True.
Again, this will be done by adding 3ni pairs (tti, t

f
i ) and 3ni pairs (tfi , t

t
i) to P1.

Finally, to force the consistency of truth association in Ts and Tt, we will force
a directed path from st

i to tti or from sf
i to tfi by adding 3ni pairs (st

i, t
t
i) and

3ni pairs (sf
i , t

f
i ) to P1.

The complementing subset of pairs is defined as follows:

P2 = {(st
i, t

t
j), (s

t
i, t

f
j ), (sf

i , t
t
j)|(xi ∨ xj) ∈ f} ∪

{(sf
i , t

t
j), (s

f
i , t

f
j ), (st

i, t
t
j)|(¬xi ∨ xj) ∈ f} ∪

{(st
i, t

t
j), (s

t
i, t

f
j ), (sf

i , t
f
j )|(xi ∨ ¬xj) ∈ f} ∪

{(sf
i , t

t
j), (s

f
i , t

f
j ), (st

i, t
f
j )|(¬xi ∨ ¬xj) ∈ f}

Define P = P1 ∪ P2. We claim that c clauses in f can be satisfied iff 18n + c
pairs in P can be satisfied, where n is the total number of clauses in f .

Suppose that there is a truth assignment that satisfies c clauses in f . Direct
the edges (si, s

t
i), (si, s

f
i ), (ti, tti) and (ti, t

f
i ) according to the assignment. Direct

all other edges in Ts upwards, and edges in Tt downwards. For each i, there are
9ni satisfied pairs in P1. Since

∑
i ni = 2n, the number of satisfied pairs in P1

is 18n. Clearly, for every satisfied clause there is a satisfied pair from P1. Thus,
18n+ c pairs of P can be satisfied.

Conversely, suppose we have an orientation of T so that 18n + c pairs of P
are satisfied. For each i there are at most 9ni satisfied pairs in P1. If the total
number of satisfied pairs in P1 is less than 18n, then for some i there are less
than 9ni satisfied pairs (out of the ones associated with it). This implies that
the directions of the edges (si, s

t
i), (si, s

f
i ), (ti, tti), (ti, t

f
i ) are inconsistent. Thus,

either 6ni, 3ni or 0 of the corresponding pairs are satisfied. However, if we make
these edge directions consistent, we add at least 3ni satisfied pairs from P1 and
lose at most 3ni pairs involving one of st

i, s
f
i , t

t
i, t

f
i from P2. Thus, w.l.o.g., we can

assume that these edges are directed consistently, implying exactly 18n satisfied
pairs from P1. In addition, we have c satisfied pairs from P2. Moreover, due to
the consistency assumption, each clause can have at most one associated pair
satisfied. It follows that c clauses can be satisfied in f .

3 Exact and Approximation Algorithms for MTO

As we have shown that MTO is NP-hard, we describe polynomial time algorithms
for special cases, and approximation algorithms for special cases and for the
general case. We start by providing an integer programming (IP) formulation
of the problem that will be useful for studying the practical performance of the
algorithms we propose for MTO.



226 A. Medvedovsky et al.

3.1 An Integer Program Formulation

Since every two vertices in a tree are connected by a unique path, MTO can be
solved using the following integer program:

1. For each vertex pair p ∈ P introduce a Boolean variable y(p), indicating
whether it is satisfied or not.

2. For each edge e = (u, v) ∈ T , where u < v, introduce a Boolean variable
x(e), indicating its direction (1 if it is directed from u to v, and 0 otherwise).

3. For each pair p = (a, b) ∈ P and every tree edge e = (u, v) ∈ T , where u < v:
if the path from a to b in T uses e in the direction from u to v, introduce a
constraint y(p) ≤ x(e), and if it uses the edge in the direction from v to u,
introduce a constraint y(p) ≤ 1 − x(e).

4. Maximize the objective function
∑

p∈P y(p).

It is possible to consider an LP-relaxation of the above integer programming,
but it is not very useful as a value of |P |/2 can always be obtained by setting
x(e) = y(p) = 1

2 for every e ∈ T and p ∈ P .

3.2 Solving MTO on Paths

In this section we present a simple dynamic programming algorithm that solves
MTO on a path in polynomial time.

Assume that the vertices on the path are numbered consecutively from 1 to n.
The edges of the path are (i, i+ 1), for 1 ≤ i < n. We think of vertex i as lying
to the left of vertex i+ 1. We also let [i, j] = {i, i+ 1, . . . , j}.

Let P be the input set of pairs. For every 1 ≤ i < j ≤ n, let v+
ij = |{(a, b) ∈

P | i ≤ a < b ≤ j}| and v−ij = |{(b, a) ∈ P | i ≤ a < b ≤ j}|. In other words,
v+

ij is the number of pairs of P with both endpoints in the interval [i, j] that are
satisfied when the edges (i, i+1), . . . , (j−1, j) are all oriented to the right, while
v−ij is the number of such pairs satisfied when the edges are oriented to the left.
Let vij be the maximal number of pairs of P with both endpoints in [i, j] that
can be simultaneously satisfied using any orientation of the edges in the interval
[i, j]. We claim:

Lemma 1. For every 1 ≤ i < j ≤ n we have vij = max{ v+
ij , v

−
ij , max

i<k<j
vik+vkj}.

Proof. The proof that vij ≥ max{ v+
ij , v

−
ij ,maxi<k<j vik +vkj} is straightforward.

We prove, therefore, the opposite inequality. Consider the orientation of [i, j] that
achieves the maximal value of vij . If all the edges in this orientation are oriented
to the right, then vij = v+

ij and we are done. Similarly, if they are all oriented to
the left, then vij = v−ij . Otherwise, there is a vertex i < k < j for which the edges
(k − 1, k) and (k, k+ 1) have opposite orientations. It follows that no pair (a, b)
with a < k < b or b < k < a can be satisfied by such an orientation. Hence, all
edges satisfied by this orientation lie in either [i, k] or [k, j]; thus, vij = vik +vkj ,
as required.

As an immediate corollary we get:

Theorem 3. MTO on paths of length n can be solved in O(n3) time.
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3.3 Approximating MTO on Stars

A star is a tree in which the root is directly connected to all the leaves (i.e.,
a tree with one level). In this section we describe an approximation algorithm
for MTO on stars that will also serve as a building block in our approximation
algorithms for general trees.

Lemma 2. If T is a star then at least 1/4 of all pairs can be satisfied.

Proof. Choose a random orientation. Each pair is then satisfied with a proba-
bility of at least 1/4.

It is easy to use the method of conditional expectations to obtain a deterministic
linear time algorithm that produces an orientation of a star that satisfies at least
1/4 of the pairs. This immediately gives us a 1/4-approximation algorithm for
the problem. As the MTO problem on stars is equivalent to the Max-DI-Cut

problem, an 0.874-approximation for the problem can be obtained using the
semidefinite programming based approximation algorithms [2,9].

Approximating MTO on Caterpillars

Recall that a caterpillar is a graph in which all vertices are on a central path
or at most one edge away from it. MTO is NP-complete even for caterpillars
with maximum degree 3 (the proof is similar to the proof for binary trees, and
is omitted for lack of space). We show the following:

Lemma 3. Let T be a caterpillar. At least 1/8 of all pairs can be satisfied.

Proof. Partition edges into ‘path’ edges which lie on the caterpillar path, and
‘bush’ edges which “stick” from it. Direct the path edges in a single direction
by choosing one of the two at random. Also, randomly direct each of the bush
edges. Note that each pair of vertices (u, v) is connected by at most two bush
edges and a sub-path. Therefore, the probability that (u, v) is satisfied by the
random assignment is at least 1/8. The claim follows.

3.4 Approximating MTO on Bounded-Depth Trees

In this section we present approximation algorithms for rooted, bounded-depth
trees that make use of the approximation algorithm for stars. All the results can
be extended to unrooted, bounded-diameter trees by rooting them at a “central”
vertex so that their depth is bounded by roughly half the diameter.

Consider a tree T with d levels (and depth d − 1). We denote the vertices
at level i by Li, starting from the root at level 1. For a node v, denote by Tv

the subtree rooted at v. Two notions of separation will be useful to us in the
approximation algorithms that we design in the sequel.

Definition 2. A node w in a tree separates a pair (u, v), if w is on the path
between u and v. w is called the lowest common ancestor (LCA) of u and v if
in addition it lies on the lowest possible level in the tree.
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Lemma 4. For any vertex v in T , at least 1/4 of the pairs separated by v can
be satisfied.

Proof. Re-root the tree at v, and denote its subtrees by T1, . . . , Tl. We will direct
all edges in Ti either toward v or away from v, consistent with the edge between
v and Ti. To direct the edges between v and Ti, construct an instance of MTO on
a star T ′ as follows: the root is v, and there are l leaves v1, . . . , vl. For each (u,w)
separated by v, where u ∈ Tx, w ∈ Ty, add (vx, vy) to P ′. By Lemma 2, 1/4 of the
pairs in P ′ can be satisfied. The edge directions in T ′ are used to direct the edges of
the tree. It is easy to see that any pair (u,w) separated by v, where u ∈ Tx, w ∈ Ty,
is satisfied iff (vx, vy) is satisfied in T ′. The claim follows.

Corollary 3. For any vertex v in T , at least 1/4 of the pairs whose LCA is v
can be satisfied.

Definition 3. For a tree T rooted at a vertex v, we denote by StarMTO(T, P, v)
the star-based solution of the MTO problem on T , as described in the proof of
Lemma 4.

Lemma 5. Let T be a rooted tree with d levels. At least 1/(4d) of the pairs in
P can be satisfied.

Proof. As there are d levels, there must be a level j that contains at least |P |/d
LCAs of the pairs in P . Compute StarMTO(Tv, P, v) for each node v ∈ Lj . By
Corollary 3, at least |P |/(4d) of the pairs are satisfied.

The above lemma provides us with a lower bound on the number of pairs that
can be satisfied. It implies an approximation algorithm to MTO with a ratio of
1/(4d), but the latter ratio can be improved as we show next:

Lemma 6. Let T be a tree with d levels. MTO can be approximated to within a
factor of 1/(2d) on T .

Proof. We form a d-partite graph Gd, in which each node corresponds to a pair
in P . The i-th layer is the set of pairs whose LCAs lie on Li. We connect two
vertices (in two layers) by an edge if the two pairs cannot be simultaneously
satisfied. Clearly, the maximum number of pairs that can be satisfied is no more
than a maximum sized independent set I in Gd.

For the algorithm, find an independent set I ′ in Gd. Next, solve StarMTO
starting with the root level of the tree, and going down the tree. Specifically, for
each vertex v ∈ Li, solve StarMTO(Tv, I

′, v) on the pairs in the independent set
I ′. Note that some of the edge directions have been pre-set by previous levels.
However, as I ′ is an independent set, the edge directions set by previous levels
do not contradict any of the pairs in the current level. By Lemma 2, at least
|I ′|/4 pairs are satisfied. The approximation ratio is therefore

|I ′|
4|I| =

αd

4

where αd = 2/d is the approximation ratio achievable for independent sets on a
d-partite graph [7]. Overall we get an approximation ratio of 1/(2d).
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Lemma 6 implies a 1/(2 lgn) approximation algorithm for a complete binary
tree, as it contains lgn levels.

Approximating MTO on General Trees

Lemma 7. In every tree of size n there is a centroid node whose removal breaks
the tree into components of size at most n/2.

Our approximation algorithm for general trees is as follows:

MTO(T, P )

1. Find a centroid v, with resulting subtrees T1, . . . , Tl.
2. Let As = StarMTO(T, P, v).
3. For all 1 ≤ j ≤ l, let Pj = MTO(Tj , P ).
4. return max{As,

∑
j Pj}.

Theorem 4. Let T be a tree with n nodes. For any set P , MTO(T, P ) finds an
orientation that satisfies at least 1/(4 lgn) of the pairs.

Proof. Let R(n) be a lower bound on the fraction of the pairs satisfied by the
orientation produced by the algorithm when run on a tree with n vertices. We
show by induction that R(n) ≥ 1

4 lg n .
At the base of the induction n = 2. In this case, at least 1/2 of the pairs are

satisfied, and R(n) ≥ 1/2. Suppose now that R(k) ≥ 1/(4 lg k) for any k < n.
Let P (n) = |P |R(n) denote the minimum number of pairs satisfied by running
MTO on an input of size n. Also, let A be the subset of pairs separated by
the centroid v. By the induction assumption,

∑
j P (nj) ≥ |P |−|A|

4 lg(n/2) . Therefore,
applying to the recursion

P (n) = max

⎧
⎨

⎩
|A|
4
,
∑

j

P (nj)

⎫
⎬

⎭
≥ max

{
|A|
4
,
|P | − |A|
4 lg(n/2)

}

The two sub-expressions are balanced for |A| = |P |/ lgn, implying that

R(n) =
P (n)
|P | ≥ 1

4 lgn

4 Applications to Simulated and Real Network Data

We implemented the general approximation algorithm described above and
tested it on simulated and real network data. To evaluate its performance we also
implemented the integer-program algorithm which provides an optimal solution
to MTO.
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Fig. 2. Performance on simulated data. Percents of satisfied pairs are displayed for
both an optimal solution (based on IP) and the approximation algorithm’s solution. A
third plot depicts the implied approximation ratio.

4.1 Performance on Simulated Data

As a first test of the algorithm, we measured its approximation ratio performance
on random trees, by comparing the solutions it obtained to those obtained by
the IP algorithm. The random trees contained 1,000 vertices and were generated
by iteratively adding a vertex, and connecting it to one of the already existing
vertices uniformly at random. The cause-effect pairs were generated by drawing
vertices from the tree uniformly at random.

We tested the algorithm’s performance when varying the number of cause-
effect pairs from 20 to 1000. The percentage of satisfied pairs along with the
implied approximation ratio are displayed in Figure 2. Evidently, the algorithm
attains very high approximation ratios in practice reaching up to 0.9 and higher
ratios on instances with 500 or more pairs. Notably, even on random instances
for which at least 80% of the pairs could be satisfied (see a detailed description
in the next paragraph) the average approximation ratio was 0.66 – much higher
than the theoretical guarantee.

To test the utility of the algorithm in predicting edge directions, we simulated
input with known edge directions as follows: we generated 20-1,000 pairs of
vertices. 80% of the pairs were generated in a way that all could be satisfied
simultaneously. The other 20% of the pairs were generated randomly, to simulate
noise. We randomly chose 50 edges on the paths of the ”correct” pairs, and tested
the algorithm’s accuracy in predicting their direction. The accuracy did not seem
to depend on the number of pairs, and was 0.76 on average.
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4.2 Biological Data

Next, we tested the performance of our algorithm on real data. To this end,
we used a yeast protein-protein interaction (PPI) network consisting of 15,147
protein-protein interactions obtained from the Database of Interacting Pro-
teins [11]. We complemented this network by additional 596 (kinase-substrate)
PPIs from [10] for which the direction of signal flow is known (from the kinase to
the substrate), represented as undirected edges in the constructed network. For
cause-effect pairs, we used knockout data obtained from [12]. The data set con-
tained 24,457 pairs of a knocked out gene (cause) and an affected gene (effect),
out of which 14,295 are pairs of proteins from the network.

After removal of small disconnected components (of size ≤ 3) and cycle-
contraction, we obtained a tree with 2,027 vertices and 3,370 cause-effect pairs.
Interestingly, about 90% of the vertices in the contracted tree were aligned in a
star form. Applying our approximation algorithm to the tree yielded an orienta-
tion that satisfied 3,262 of the 3,370 pairs. The optimal solution, obtained using
integer programming, satisfied 3,295 pairs, implying a practical approximation
ratio of 0.99. This tight ratio matches the ratios observed in the simulations
(Figure 2).

The orientation produced by the algorithm provided predictions for 3,880
interaction directions. 148 of these interactions were from the kinase-substrate
data set and, hence, their true directions were known. Remarkably, 147 of these
148 directions were predicted correctly. Notably, none of the kinase-substrate
interactions were also cause-effect pairs, but rather lied on paths connecting
such pairs.

5 Conclusions

In this paper we have studied the problem of orienting a graph so as to satisfy
a maximum number of ordered pairs. We have given exact and approximate
algorithm to certain restrictions of the problem, and an O(log n) approximation
algorithm for the general case. The algorithm was shown to yield very tight
approximation ratios in practice, and attained remarkable accuracy in predicting
edge directions on a real protein network.

Several open problems that require further investigation include: (i) closing
the gap between the guaranteed approximation ratio in the general case and the
approximation hardness result; (ii) tackling the graph orientation problem when
some of the edge directions are pre-set (in the biological context this happens
when there is prior biological knowledge on directionality or when considering
other types of interactions such as transcriptional regulatory ones); and (iii)
improving the lower bound on the optimum number of pairs that can be satisfied.
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Abstract. We present the first exact method based on the topology of a
metabolic network to find minimal sets of metabolites (called precursors)
sufficient to produce a set of target metabolites. In contrast with previous
proposals, our model takes into account self-regenerating metabolites
involved in cycles, which may be used to generate target metabolites
from potential precursors. We analyse the complexity of the problem
and we propose an algorithm to enumerate all minimal precursor sets for
a set of target metabolites. The algorithm can be applied to identify a
minimal medium necessary for a cell to ensure some metabolic functions.
It can be used also to check inconsistencies caused by misannotations in
a metabolic network. We present two illustrations of these applications.

1 Introduction

The metabolic capacities of an organism are directly defined by the set of its
possible biochemical reactions. The links between reactions and compounds (or
metabolites) that are used/produced by such reactions constitute the metabolic
network of an organism. Once the metabolic network of an organism has been
defined (see [2] for an overview of the metabolic data reconstruction process),
the following important question arises: how are the essential metabolites for the
organism produced? Equivalently, which are the metabolites that the organism
needs to obtain from its environment to produce those essential metabolites? In
the sequel, we call such metabolites precursors.

One way to answer this question is to manually inspect the metabolic path-
ways defined as present in the organism: the presence of any metabolic pathway
is determined by comparing the set of reactions of a reconstructed metabolic net-
work with the set of reactions in the reference metabolic pathways contained in
metabolic databases such as metacyc from the biocyc database collection [1]
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or kegg [5]. However, each reference metabolic pathway represents a very small
part of the whole network and does not consider what occurs upstream of the
pathway, nor whether some alternative organism-specific pathways exist.

With the goal of detecting inconsistencies in ecocyc (the pathway-genome
database dedicated to the bacterium Escherichia coli), Romero and Karp [8] used
a whole-network approach to find precursors, while Handorf et al. [4] proposed a
method to identify minimal metabolite sets required by an organism to produce
all metabolites contained in a target set. In the method of Romero and Karp,
the definition of potential precursors is very restrictive while it is very broad
in Handorf et al.’s method. In this paper, we propose an exact method that
may deal with any set of potential precursors defined by the user. Our method
also takes into account the fact that most reactions are defined as reversible
because of a lack of information on metabolite concentrations and enzyme kinetic
properties. It can be used with a directed, undirected or mixed hypergraph
representation of a metabolic network. It is not clear whether previous proposals
could handle such cases.

In their paper, Romero and Karp did also not provide any details on how they
dealt with cycles of reactions, a crucial issue when analysing metabolic networks.
A similar consideration applies to the Handorf method, where a reaction can be
fired only if all the metabolites are in the sub-network already produced by the
process. The method is therefore not able to take into account metabolites which
cannot be reached by such a process. The second main contribution of this paper
is to address this problem by explicitly dealing with cycles when computing
precursor sets. By a cycle, we refer to the concept of cycle in a hypergraph
representation of a metabolic network which we describe in detail in Section 2.

This calls for the introduction of the new, biologically well-founded concept
of “self-regenerating” metabolites that cannot be considered as available in in-
finite supply, e.g. provided by the environment, as is assumed to be the case
for precursors. Such metabolites need to be continuously regenerated, but they
have the ability to participate in their own regeneration, and in the subsequent
generation of other metabolites. Self-regenerating metabolites will be part of at
least one cycle. In [8], Romero and Karp very informally define what they call
bootstrapping compounds that may be related to our self-regenerating metabo-
lites but only partially and the list of such compounds needs furthermore to be
provided as input by the user.

In Section 2, we give basic notations and definitions. In Section 3, we analyse
the complexity of finding a minimal and a minimum precursor set. An exact
method for enumerating all minimal precursor sets for a given set of target
metabolites is described in Section 4. Finally, the method is illustrated with two
applications in Section 5. For the sake of space most proofs are omitted.

2 Preliminaries

A metabolic network consists of a set of metabolites and a set of reactions. Each
reaction transforms a subset of metabolites, the substrates, into another subset
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of metabolites, the products of the reaction. Such a network can be modeled as
a directed hypergraph G = (C,R) with C the set of vertices corresponding to
metabolites (also called compounds) and R the set of hyperedges corresponding
to reactions. A hyperedge r ∈ R is directed away from a compound c ∈ C only
if c is a substrate of r, and directed into c only if c is a product of r. Note that
reactions can be reversible: each reversible reaction is modelled as two different
reactions of opposite direction.

A solution to the problem of finding precursors for a specific set of target
metabolites is a set of compounds that are in “infinite” supply (for instance,
from the environment) and can be used as substrates of some reactions. These
reactions will then produce new metabolites, thereby increasing the set of avail-
able metabolites. By iterating the process, we can check whether the target is
produced.

This way of considering the dynamics of a network is not enough to model
the real process. Indeed, the network could have cycles that regenerate their
own metabolites: metabolites that are not available initially could still be used
as substrates of reactions because they are part of a cycle in which they are both
produced and consumed. We call such metabolites self-regenerating and we ob-
serve that they can be used to generate other metabolites that are not potential
precursors. Self-regenerating metabolites and the metabolites they enable to be
generated will be called the continuously available metabolites.

Let us consider the network of Figure 1 with A and C as potential precursors
and E as target metabolite. In this case, B and D are self-regenerating metabo-
lites that are continuously available. Note that G is also a continuously available
metabolite.

A D

B C

G E

F

R1
R2

R3 R4

R5

H

I

Fig. 1. A metabolic network G with set of metabolites C = {A, B, C, D, E, F, G, H, I},
set of reactions R = {R1, R2, R3, R4, R5}

For each reaction r ∈ R, we call Inp(r) the set of substrates of r and Out(r)
the set of products of r. In what follows, P(S) denotes the power set of a set S.

Definition 1. Given X ∈ P(C), Reach(X) ∈ P(C) is the set of compounds y
for which there exists r ∈ R with Inp(r) ⊆ X and Out(r) ! y.

In other words, y ∈ Reach(X) if there exists a reaction in R producing y whose
substrates are in X .

Given sets X , compounds in infinite supply, and Z, continuously available
compounds, we wish to compute the total set of compounds that can be produced
by the network.
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Definition 2 (Reachability Function). Let X ∈ P(C) and Z ∈ P(C) be two
subsets of metabolites. The reachability function fZ : P(C) −→ P(C) is defined
as fZ(X) = X ∪ Reach(X ∪ Z).

We define the functions fk
Z(X) = fZ(fk−1

Z (X)), with f1
Z(X) = fZ(X), as the

function obtained by iterating k times the function fZ .

Definition 3 (Scope Function). Let Z ∈ P(C) and X ∈ P(C) be two subsets
of metabolites. The scope function f∗

Z : P(C) −→ P(C) is fZ
∗(X) = fZ

k(X) for
any k such that fZ

k(X) = fZ
k+1(X).

Note that fZ is monotone, both in X and in Z and fZ
∗ represents what may be

produced from X with the help of Z and using reactions in R. To define when a
set of compounds X is a precursor set of a target T , we therefore need to impose
that fZ

∗ contains T , and fZ
∗ can “regenerate” Z.

Definition 4 (Precursor Set). A set of metabolites X ⊆ P(C) is a precursor
set of T ⊆ P(C) if there exists a set Z ⊆ P(C) such that fZ

∗(X) ⊇ T ∪ Z.

Note that in the above definition we are interested only in the existence of Z
and not in characterising the set of available compounds that allows X to be a
precursor set of T .

We now define a precursor set of a single target t in the hypergraph model.

Definition 5 (Hyperpath with a Set of continuously available Metabo-
lites).

A set H(X, Z, t) ∈ P(R) of reactions is a hyperpath from a set of metabolites
X to t using another set of metabolites Z if it satisfies:

1. The reactions in H(X, Z, t) can be ordered < r1, r2, . . . , rk > so that:
i) for all ri, Inp(ri) ⊂ X ∪ Z ∪ Out(r1) ∪ . . . ∪ Out(ri−1);
ii) t ∈ Out(rk);
iii) for all s ∈ Z, there exists j(s) such that s ∈ Out(rj(s)),

2. No proper subset of H(X, Z, t) verifies the above.

Clearly, if there is a hyperpath H(X, Z, t) then X is a precursor set of t. For
instance, in the Figure 1, if E is the target, and A and C are potential precursors,
there is a hyperpath H(A, C, B, E) = r1, r2, r3, r4 such that the set A,C is a
precursor set of E.

The reverse is shown in the following.

Lemma 6. If X is a precursor set of t, then there exists a hyperpath H(X, Z, t)
for some Z ∈ P(C).

Sketch of the Proof
In the following we define recursively a sequence of reactions: starting from the
target t, at each step i we choose a reaction ri that produces a non-precursor
and/or a substrate not yet produced by some of the previous reactions r1, . . . ,
ri−1. The obtained sequence may contain repetitions. By eliminating repeti-
tions and inverting the list, we get an ordered set H that fullfills condition 1 of
Definition 5.
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In order to find reactions that can be reached from X , we only consider
reactions in the set W = {r ∈ R | Inp(r) ⊆ fZ

∗(X)}, i.e. reactions that takes
as substrates only compounds available in the scope of X .

Let N0 = {t} and A0 = ∅. At iteration i, i ≥ 1, we define the sets Ai =
∪i

j=1Out(rj)\X and Ni = ∪i
j=1Inp(rj)\(Ai∪X), i.e., Ai is the set of compounds

produced in the first i reactions and Ni the set of compounds consumed but not
yet made available in the first i reactions. In iteration i, select some ci ∈ Ni−1.
Since ci /∈ X , we know, by definition of W , that there exists a reaction ri ∈ W
with ci ∈ Out(ri). We update the set Ai by Ai−1 ∪ (Out(ri) \ X) and define
the set Si = Inp(ri) ∩Ai, substrates of ri that have been produced already. We
update Ni = (Ni−1 ∪ Inp(ri)) \ (Ai ∪ X).

This process is iterated until Ni is empty, which has to occur since the se-
quence of Ai is monotone. Let k be the first (and last) iteration such that Nk = ∅
and let Z = ∪k

i=1Si. The sequence ω = r1, . . . , rk may have repetitions. We de-
fine r̄1, . . . , r̄� as the subsequence that contains only the first occurrence of each
reaction and define H = {r̄1, . . . , r̄�} to be the set including all these reactions.

In the full version we shall show that the above defined set of reactions fullfills
the conditions of Definition 5. ��
In the following we study the three problems below:

Problem mal-PS(G, P, T ): given a metabolic network G = (C,R) with
P ⊂ C the set of all potential precursors and T ⊂ C the set of target
metabolites, find a minimal precursor set X ⊂ P of T in G.

Problem min-PS(G, P, T ): given a metabolic network G = (C,R) with
P ⊂ C the set of all potential precursors and T ⊂ C the set of target
metabolites, find a minimum size precursor set X ⊂ P of T in G.

Problem allmal-PS(G, P, T ): given a metabolic network G = (C,R)
with P ⊂ C the set of all potential precursors and T ⊂ C the set of target
metabolites, enumerate all minimal precursor sets X ⊂ P of T in G.

Given the network of Figure 1, let E be the target and {A, C, F} the potential
precursors. A solution to the mal-PS(G, P, T ) problem is {A, C} or {F} whereas
the precursor set {A, C, F} is not a solution because it is not minimal. The
solution to the min-PS(G, P, T ) problem is {F}. Finally, the solution to the
allmal-PS(G, P, T ) problem is given by {A, C} and {F}.

3 Minimal and Minimum Precursor Sets

The following useful Lemma is an interesting result in itself.

Lemma 7. Given G, T , there exists a polynomial time algorithm to check
whether a set X is a precursor set of T in G. ��

The following algorithm for mal-PS(G, P, T ) resembles the one presented by
Handorf et al. [4]. Given G, P and T , a simple algorithm to solve mal-PS(G, P, T )
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first sets X = P ; at the beginning all compounds in X are unmarked. Then, the
algorithm determines whether X is a precursor set of T in G using the algorithm
in the proof of Lemma 7. If the answer is negative, then there is no precursor
set and the algorithm stops. Otherwise, let u be an arbitrary unmarked com-
pound of X and set X ′ = X − {u}; the algorithm determines whether X ′ is a
precursor set of T in G. If so, then u is deleted from X : there exists at least one
minimal solution that does not contain u. If not, then u remains in X and it
is marked. The algorithm iterates this procedure until no unmarked compounds
are left. Since all marked compounds are essential for a precursor set, they form
a minimal precursor set of T in G. The following theorem states the correctness
of the algorithm.

Theorem 8. Given G, P, T , there exists a polynomial time algorithm that solves
mal-PS(G, P, T ). ��

The following is proved by a reduction from the Hitting Set problem [3].

Theorem 9. min-PS(G, P, T ) is NP-hard. ��

4 Algorithm for Enumerating All Minimal Precursor Sets

To facilitate the exposition, we consider the case of a single target metabolite. The
solution for several target metabolites is computed by adding an artificial node to
the metabolic network and one irreversible reaction that has each target as sub-
strate and the artificial node as only product, which then acts as the single target.

The algorithm is composed of two steps: the first one defines a special structure,
called a replacement tree, that contains a representation of at least one hyperpath
(see Section 2) for each precursor set of t. To achieve this, we proceed in a way that
is analogous to the one adopted in the proof of Lemma 6; the main difference is that
in this case X is unknown (in fact the algorithm is seeking all X that are precursor
sets for t). Therefore, when the algorithm moves backwards in the network starting
from t, it must consider all reactions and not only those in W . At the end of step
1, the replacement tree will contain a representation of at least one hyperpath for
each minimal precursor set of t but also the representation of some hyperpaths
that do not represent minimal precursor sets. In the second step, the replacement
tree is used to enumerate all the precursor sets for the target metabolite, and sets
of metabolites that are not precursor sets are removed.

The proof of the correctness of the algorithm uses Lemma 6 and is omitted.
The time and space complexity of the algorithm are linear in the size of the
replacement tree whose size can be exponential (note also that the number of
solutions might in any case be exponential in the size of P ). We finally observe
that the two steps are described separately for the sake of clarity: in fact they can
be executed simultaneously, thereby improving the time and space requirements.

Building the Replacement Tree
The replacement tree is rooted and directed from its root to the leaves. Nodes
of the tree are labelled either by a metabolite or by a reaction. In the first case,
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we have a metabolite node while in the second a reaction node. The children of a
metabolite node are reaction nodes labelled by those reactions that produce the
metabolite while the children of a reaction node are labelled by its substrates. In
the tree, both metabolite and reaction nodes have only one parent whereas both
can have several children. In the sequel, we use the terms product node for the
parent of a reaction node and substrate nodes for the children of a reaction node.

The construction of the tree starts at the root t. For each reaction producing
this metabolite, we create a reaction node, which has as parent the root, and as
children new metabolite nodes corresponding to the substrates of the considered
reaction. In this way, we obtain a tree (of depth 3) whose leaves are metabolites.
This process is then iterated for each new metabolite node.

Let us call u a newly created metabolite node and c the corresponding metabo-
lite of u. Along any branch of the tree, the process stops when one of these three
conditions below is verified:

1. c corresponds also to an ancestor of u,
2. c corresponds to a child of one reaction node ancestor of u, or
3. c is not produced by any reaction (we cannot go further back in the network).

In the first case, we flag u as “continuously available”. An example is metabolite
node u1 = H that is one of the children of N12 in the tree depicted in Figure 2.
In this case, this metabolite node is flagged as continuously available (indicated
by a star beside the node). Indeed, the metabolite is regenerated by the network.

In the second case, c is considered as a child of a reaction node of u; so it is not
necessary to duplicate the search for a precursor by expanding the metabolite.
An example is metabolite u2 = I in Figure 2. In this case, I is produced by
reaction node N14 which is not ancestor of u2 = I in the tree. Since I is the child
of the reaction node N13 ancestor of u2 = I, I has been already analysed. In the
third case, c cannot be produced by any other reaction node so there is no need
to expand it.

Therefore, when the process stops, all the leaves of the tree contain only
metabolites not produced by any reaction or already visited metabolites.

The procedure implies that, for any solution X for target t, there exists a
subtree whose set of reactions represents a hyperpath from X to t using some
compounds that are regenerated (set Z in Lemma 6).

Lemma 10. If X is a precursor set of t, then there exists a subtree of the
replacement tree containing a hyperpath H(X, Z, t) for some Z ∈ P(C).

Enumerating the Solutions
We now use the replacement tree to enumerate all minimal precursor sets for t.
This is done by successively processing subtrees that have a single reaction node
r as root and one or more metabolite nodes as children that are all leaves in the
tree. Depending on what those metabolite leaf nodes are (potential precursors,
flagged metabolites or non-flagged metabolites), the subtree will either be elimi-
nated, or it will be used to create a new subtree that will replace it. This effects
a progressive compression of the original replacement tree until it has only three
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Fig. 2. An example of a metabolic network and of a replacement tree for the target
metabolite A. 1. The metabolic graph. The metabolite nodes surrounded in black are
potential precursors. These are B, D, F, L, J, K and M. 2. The replacement tree before
compression. 3. The replacement tree after compression. Each set of substrate nodes
of a reaction node corresponds to a minimal precursor set.

levels composed of the root (level one), the reaction nodes producing the root
(level two) and the minimal precursor sets (level three). The final compressed
tree preserves the same properties as the initial tree with respect to the minimal
precursor sets that produce the target t.

The compression algorithm starts by considering a reaction node whose sub-
strate nodes are all leaves. Let r be the label of such a node, p be the parent of
r, S the set of labels of its children and n the parent of p (note that S is a set of
compounds and n is a reaction node). If r is such that either i) at least one of
its substrate nodes is neither a potential precursor nor a flagged (continuously
available) metabolite or ii) the potential precursors in S form a superset of the
potential precursors that are substrate nodes of another reaction node having
also p as parent, then the subtree rooted at r is simply eliminated from the tree.

If r is not eliminated, the subtree rooted at n is duplicated; namely all reaction
and metabolite nodes are duplicated maintaining their label. Let n′ be the root
of this new subtree, p′ the child of n′ that corresponds to p, and r′ the child of
p′ that corresponds to r. Furthermore, n′ has the same parent as n.

We now modify the subtrees rooted at n and n′ as follows:

– the metabolite nodes that are children of r in the subtree rooted at n are
disconnected from r and r itself is eliminated;

– we replace node p′ in the subtree rooted at n′ with the set of children of r′.
Both p′ and r′ are removed from n′.

We describe one example, using the replacement tree of Figure 2. Assume that, at
some iteration of the compression algorithm, the subtree rooted at the reaction
node N9 whose substrate nodes are leaves of the tree is considered. The children
of N9 are potential precursors, and the parent of N9 has no other child. Therefore
we cannot eliminate N9. Since the reaction node that is its immediate ancestor



Enumerating Precursor Sets of Target Metabolites in a Metabolic Network 241

is N4 the subtree rooted at N4 is duplicated. Suppose the root of the duplicate
subtree is labelled N4’. N4’ is made the child of the parent of N4 labelled C. The
metabolite nodes labelled F and M children of N9 are made the children of N4’
in replacement of the copy of N4’s only child labelled G. Reaction node N9 is
removed. The parent of N4 has now 3 children: N3, N4 and N4’. If N4 is the new
subtree considered at the next iteration of the algorithm, the algorithm would
eliminate it since its only child is not a flagged leaf. If the subtree rooted at N4’
is considered then its two children, labelled F and M, are potential precursors.
However, since {F,M} is a superset of the set of potential precursors that are
substrate nodes of N3 (only F), the subtree rooted at N4’ can be eliminated and
the next reaction node considered could be N3.

The process above described continues until the final compressed tree has
only 3 levels: the root labelled by the target, the reaction nodes produced by
the compression and the substrate nodes of these reaction nodes. The crucial
property is that each step of the compression does not eliminate any minimal
precursor set of t; it follows that labels of the children of a level 2 node directly
correspond to a minimal precursor set of the target, as stated in the following
lemma.

Lemma 11. If X is a minimal precursor set of t, then there exists a child x of
the root of the final compressed tree such the set of labels of the children of x
coincides with X. ��

5 Illustrations

We now briefly present two illustrations of our method. In the two cases, the
set of potential precursors are defined in the same way. Since precursors are
in general expected to be at the periphery of the network, we define as poten-
tial precursors all the metabolites not produced by any reaction and those that
are involved in only one reaction which is reversible. This definition may not
be sufficient for defining all potential precursors. We can therefore add some
internal metabolites as further potential precursors. The final set and the pro-
cedure to get the metabolic data are given in the supplementary file available at
http://biomserv.univ-lyon1.fr/∼cottret/WABI/annexes.pdf.

5.1 Checking Inconsistencies in a Metabolic Database

The first example is very similar to the study done by Romero and Karp [8]
whose goal was to check inconsistencies in the metabolic database EcoCyc [6].

There are two steps: the first proceeds exactly as in [8] on EcoCyc and is done
to recover the target metabolites not reached by Romero and Karp’s forward
propagation algorithm. From the set of nutrients and of bootstrap metabolites
given as input (these compounds are indicated by the user as being always
present even though they may not be continuously available metabolites), the
target metabolites not present in the scope of the nutrients are identified. In the

http://biomserv.univ-lyon1.fr/~cottret/WABI/annexes.pdf
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second step, our method is applied on the network not produced by the forward
propagation to find all the minimal precursor sets of the target metabolites not
reached during the first step.

Data. The metabolic network we build contains 897 metabolites and 879 reac-
tions, of which 104 are defined as irreversible.

The metabolites that are defined as bootstrapping during the first step, (which
can be used during the forward propagation to fire a reaction), are those present
in the minimal growth medium as indicated in [8], plus the first ten most con-
nected metabolites and some metabolites whose presence in the cell seem obvious
such as Coenzyme-A (see the supplementary file for a table of these bootstrap-
ping metabolites). The only input metabolite for the forward propagation is
glucose. The target metabolites are the 20 amino acids.

Results. In the first step, the forward propagation method in [8] returns a
network with 513 reactions and 437 metabolites. This means that half of the
network can be directly produced by injection of glucose, taking into account
the presence of the bootstrapping metabolites selected in [8]. This subnetwork
would even be bigger if our continuously available metabolites were also con-
sidered during the forward propagation. Among the 20 amino acids which are
the building blocks for the synthesis of proteins, only 2 are not produced by the
forward propagation: lysine and methionine.

Applying our method with lysine as target metabolite returns 9 sets of poten-
tially missing precursors. Among them, one was noticeable: a set which contains
only tetrahydrodipicolinate. Indeed, this metabolite is involved in the biosyn-
thesis of lysine and, surprisingly, the pathway appears complete in Escherichia
coli. Therefore the metabolite should not be a precursor. In fact, a closer look at
the data reveals an error in EcoCyc. Indeed, tetrahydrodipicolinate is a sub-
strate of reaction 1.3.1.26 which is indicated as irreversible, and furthermore in
the “wrong” direction relatively to the known pathway. Once this reaction is
made reversible, both lysine and methionine become present in the sub-network
produced by the forward propagation.

5.2 Finding Nutrients Necessary to a Metabolic Function

The second example tests a case when the number of potential precursors is
expected to be high. This is the case of the metabolic network of the endosymbi-
otic bacterium Carsonella ruddii. Indeed, this bacterium lives inside specialised
cells of psyllids, phloem sap-feeding insects. Carsonella ruddii has the most re-
duced among known metabolic networks [7], hence the expected high number
of potential precursors for its essential metabolites, such as the amino acids
the bacterium provides to its host, who is not capable of producing them. Yet
recently, the analysis of the bacterium genome [9] showed that half of the path-
ways involved in the biosynthesis of essential amino acids have been completely
or partially lost. The bacterium therefore requires possibly many nutrients from
the host to enable it to fill in these “holes”. As an illustration, we chose to search
for the precursors of one such essential amino acid, the arginine whose metabolic
pathway appears to be complete in the bacterium.
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Fig. 3. The sets of precursors of the arginine in Carsonella ruddii

Data. We built a metabolic network containing 130 compounds and 71 reac-
tions, 16 of which are defined as irreversible. As in the previous example, the
boostrapping compounds defined in [8] were eliminated from the network.

Results. We found 12 minimal precursor sets for arginine. The results are pre-
sented in Figure 3. One interesting thing in these results is that glutamine,
threonine, and ion bicarbonate are present in all solutions. Glutamine and ion
bicarbonate are involved in reaction 6.3.5.5, which represents an essential step in
the arginine biosynthesis pathway, as described in MetaCyc [1]. Threonine as
precursor of arginine deserves to be discussed. The path between threonine and
arginine goes through two different metabolic pathways by reversible reactions
to produce aspartate, a key metabolite of the arginine biosynthesis. Interestingly,
those two metabolic pathways (the “threonine biosynthesis from homoserine”,
and the “homoserine biosynthesis” pathways) are traversed in a direction inverse
to the one classically indicated in the database for those specific pathways. Of
course, this may be an artefact due to an imprecision concerning the direction
of the reactions, but it may also mean that those reactions can be used in a
direction inverse to the one indicated in the reference metabolic pathways.

6 Conclusion and Perspectives

We proposed the first topology-based exact method to find minimal precursor
sets for a set of target metabolites. Despite the complexity of the problem, the
method can be applied to genome-scale metabolic networks.

In contrast with previous methods, we deal in a formally clear way with the is-
sue of cycles when searching for precursors in a given metabolic network. To this
purpose, we defined the notion of “continuously available” compounds, which
either are able to self-regenerate themselves once activated, or to be generated
with the aid of self-regenerating metabolites. An implementation of the enumer-
ation algorithm appears to allow finding all minimal precursor sets for networks
of the sizes used in the examples in a time ranging from a few seconds to a few
hours.



244 L. Cottret et al.

Our analyses show that some concepts would need further refinements. For in-
stance, the assumption that all potential precursors are always in infinite supply
from the environment may not be fully realistic from a biologicial point of view.
Indeed, some nutrients are always available in some environmental conditions
and not available in other conditions. The possibility to define different sets of
potential precursors allows to search for the precursors in certain environments
but needs some a priori biological information about the nutrients available in
each condition.

Compressing the replacement tree while building it enables to reduce space
while enumerating all solutions. Efficient though this is, we believe better results
might be achievable. Both this and the previous problem require to define and
deal well with cycles in hypergraphs representing metablic networks.
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Abstract. Inferring transcriptional regulatory networks from gene-expression
data remains a challenging problem, in part because of the noisy nature of the
data and the lack of strong network models. Time-series expression data have
shown promise and recent work by Babu on the evolution of regulatory networks
in E. coli and S. cerevisiae opened another avenue of investigation. In this paper
we take the evolutionary approach one step further, by developing ML-based re-
finement algorithms that take advantage of established phylogenetic relationships
among a group of related organisms and of a simple evolutionary model for reg-
ulatory networks to improve the inference of these networks for these organisms
from expression data gathered under similar conditions.

We use simulations with different methods for generating gene-expression
data, different phylogenies, and different evolutionary rates, and use different
network inference algorithms, to study the performance of our algorithmic boost-
ers. The results of simulations (including various tests to exclude confound-
ing factors) demonstrate clear and significant improvements (in both specificity
and sensitivity) on the performance of current inference algorithms. Thus gene-
expression studies across a range of related organisms could yield significantly
more accurate regulatory networks than single-organism studies.

1 Introduction

The widespread use in the life sciences of high-throughputgene-expression experiments
has created a strong demand for suitable computational tools to analyze such data [19].
One of the most common analyses is the reconstruction of transcriptional (or gene)
regulatory networks, models of the cellular regulatory system that governs transcription.
In such networks, nodes are associated with genes or transcription factors, while arcs
denote regulation. These networks can be inferred from gene-expression studies using
various machine-learning or statistical inference methods. (Friedman [9] gave a survey
of inference methods for probabilistic graphical models.) Other models have also been
proposed, such as systems of differential equations [7].

Methods to reconstruct transcriptional regulatory networks from gene-expression
data include Boolean networks and their generalizations [1,15], Bayesian networks [10]
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and dynamic Bayesian networks (DBNs) [14], differential equations [7,21], and many
others. Results from these approaches, however, remain mixed: the high noise level in
the data, along with the lack of well defined, realistic models for the regulatory net-
works, combine with other factors (such as the typically large number of genes tested
vs. the small number of test samples—the so-called “tall dataset” problem) to make
inference difficult. Researchers recognized early that additional information about gene
expression could be used to good effect. Methods were developed to use time-series ex-
pression data [5,14,22,24]. Babu and his colleagues recently pioneered an evolutionary
approach to the study of regulatory networks in E. coli and in S. cerevisiae [2,3,4,20].
They posit a simple evolutionary model for regulatory networks, which adds or removes
edges to the network, and proceed to investigate how well such a model accounts for
the dynamic evolution of the two most studied regulatory networks. Using a similar
evolutionary model, Bourque and Sankoff [6] developed an algorithm to improve the
inference of cross-species gene networks based on their phylogenetic relationships.

We use a phylogenetic approach to develop algorithms that boost the performance of
any chosen network inference method by using phylogenetic information and a simple
model of network evolution. We consider a scenario where orthologous regulatory
networks have been (separately) inferred for a number of related organisms whose phy-
logenetic relationships are known. Our algorithms refine these networks by considering
all of them at once, within the known phylogeny of the organisms, to produce networks
with much higher specificity and sensitivity. Whereas Bourque and Sankoff used a
parsimony approach and tightly integrated inference and refinement, our algorithms
are formulated within a maximum likelihood (ML) framework and focus solely on
refinement, thereby allowing one to use one’s preferred network inference method. We
test our algorithms on various types of simulated data with different standard network
inference approaches, and for various specificity and sensitivity settings, and compare
the results with a standard approach. The receiver-operator characteristic (ROC) curves
for our algorithms consistently dominate those of the standard approaches; under com-
parable conditions, they also dominate the results from Bourque and Sankoff. We also
investigate the source of these improvements to eliminate various confounding factors.

This paper is organized as follows: we provide some background in Sec. 2, present
our algorithms in Secs. 3 and 4, describe our experimental design in Sec. 5, and discuss
our results in Sec. 6.

2 Background

Our approach relies on placing inferred networks (obtained by one’s favorite method) at
the leaves of the known phylogenetic tree, reconstructing ancestral regulatory networks
within this tree according to a model of network evolution, and propagating ancestral
information back down to the leaves to improve the inferred networks. We use infer-
ence algorithms based on DBN and on differential equations. For the former, we use
Murphy’s Bayesian Network Toolbox [17]; for the latter, we use TRNinfer [21]. For
ancestral sequence estimation, we use FastML [18].
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2.1 DBNs for Network Inference

When DBNs are used to model regulatory networks, an associated structure learning
algorithm is used to infer the networks from gene-expression data [8,11,14,15]. The
implementation of this algorithm in the Bayesian Network Toolbox provides two op-
timization functions: an ML score and a Bayesian information criterion (BIC) score.
Let D denote the dataset used in learning and G the (structure of the) network; the al-
gorithm using ML scoring aims to return the structure G∗ = argmaxG logPr(D|G).
However, transcriptional regulatory networks are typically sparse graphs, so that ML
inferences often produce many false positive edges. The BIC score introduces a penalty
on the complexity of G,

logPr(D|G, Θ̂G) − 0.5#G logN (1)

where Θ̂G is the ML estimate of parameters for G, N is the number of samples in
D, and #G is the number of free parameters of G. This penalty makes inference
more conservative, reducing the number of false positives in the networks inferred by
maximizing the BIC score. In practice, heuristic search methods are used, as well as
mild restrictions on the structure of the model, the latter aimed at reducing the number
of possible network structures—such as a small bound on the maximum indegree of
the nodes, a restriction that appears well supported by the data [1,15].

2.2 Differential Equations for Network Inference

Differential equations can describe causal relationships among components in a quan-
titative manner and are thus well suited to model transcriptional regulatory networks
[7,21]. A regulatory system is represented by the equation dx/dt = f(x(t)) −Kx(t),
where x(t) = (x1(t), · · · , xn(t)) denotes the expression levels of the n genes and K (a
matrix) denotes the degradation rates of the genes. The regulatory relationships among
genes are then characterized by f(·). [21] produced a tool, TRNinfer, that solves the
differential equations by formulating them into linear programming problems.

2.3 ML-Based Reconstruction of Ancestral Nodes

Reconstructing ancestral information in phylogenetic work is typically in the nature
of an anchoring step in the computation, particularly in parsimony-based approaches.
When we have high confidence in the tree and the edge lengths are modest, however,
an ML approach to ancestral inference can yield accurate results; FastML [18], using
a user-specified character substitution matrix, infers labels for the internal nodes (on a
site-by-site basis) that maximize the overall likelihood of the tree. The algorithm was
initially designed for protein sequences, but can be used for any type of sequences with
a suitable substitution matrix.

Fix a site, i.e., a character position in the sequence. Let i denote a node in the tree, li
the length of the edge between node i and its parent, and a the value of a character at
some node, chosen from a given set S of possible character values. For each character
a at each node i, we maintain two variables:
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– Li(a): the likelihood of the best reconstruction of the subtree with root i given that
the parent of i is assigned character a.

– Ci(a): the optimal character assigned to i given that its parent is assigned as a.

Finally, let πa denote the initial distribution of character a and pab(l) the probability of
substitution of a with b along an edge of length l. For simplicity, assume that the given
tree is binary; then our adaptation of the FastML algorithm carries out these steps:

1. If leaf i has character b, then, for each a ∈ S, set Ci(a) = b and Li(a) = pab(li).
2. If i is an internal node and not the root, its children are j and k, and it has not yet

been processed, then, for each a ∈ S, set
– Li(a) = maxc∈S pac(li) × Lj(c) × Lk(c)
– Ci(a) = arg maxc∈S pac(li) × Lj(c) × Lk(c)

3. If there remain unvisited nonroot nodes, return to Step 2.
4. If i is the root node, with children j and k, assign it the value a ∈ S that maximizes

πa × Lj(a) × Lk(a).
5. Traverse the tree from the root, assigning to each node its character by Ci(a).

3 Approach

The input is a set of gene-expression data matrices, for several related organisms,
along with a known phylogeny (with edge lengths) for this group of organisms.
(Such phylogenies are typically well established though the edge lengths remain to
be explored.) The first step is simply to run one’s preferred algorithm for regulatory
network inference, independently on each of the data matrices; in this study, we use two
types of inference algorithms, respectively based on DBN and differential equations.
The resulting networks are used to label the corresponding leaves of the phylogeny.
We encode a network by the concatenation of the rows of its adjacency matrix—every
code thus represents a valid network. Note that the initial networks themselves are the
real inputs to our algorithm; we use the gene-expression data stage in our tests solely
in order to enhance the verisimilitude of our simulations.

We then use our adaptation of the FastML algorithm to infer ancestral networks,
which in turn are used to refine the sequences at the leaves. We present below two
algorithms to carry out this refinement, both based on the intuition (verified in simu-
lations) that ancestral sequences are more accurate than those at the leaves, but only
up to some height in the tree—as distant ancestral sequences suffer from the inference
errors of FastML. The two middle steps can be iterated: starting from the newly refined
networks, we can once again infer ancestral networks and use the results to refine the
leaves.

We realize that edge lengths obtained from an analysis of the sequences of (typically)
a few genes need not reflect the amount of evolution in the regulatory networks—while
both evolved on the same tree, their respective rates of evolution could differ consid-
erably. As we still lack the knowledge required to formulate a more precise model of
network evolution, using the same edge lengths is just the neutral choice.
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4 Methods

4.1 Inferring the Initial Networks

In our study, we want to examine the ROC curves and so need to be able to trade off
specificity and sensitivity. To this end, we modify the inference method based on DBN
by generalizing Eq. 1 with a penalty coefficient kp to adjust the penalty:

logPr(D|G, Θ̂G) − kp#G logN (2)

where kp varies from 0 to 0.5. With kp = 0, we have the ML score; with kp = 0.5, Eq. 2
reduces to Eq. 1. For the TRNinfer algorithm, the parameter that it provides to adjust the
sparseness of the networks does not afford sufficient control to generate sparse enough
networks. We thus supplement it by applying different thresholds to the output connec-
tion matrix to choose final edges. We shall refer to these modified inference methods as
DBI for that based on the DBN model and as DEI for that based on TRNinfer.

4.2 Inferring the Ancestral Sequences

In this study our adjacency matrices are binary, with a 1 in the (i, j) entry denoting an
edge from node i to node j. We use binary matrices for simplicity’s sake: generalization
to weighted matrices is immediate and, indeed, the additional information present in a
weighted matrix should further improve the results. The data used by FastML are thus:

– the proportions of 0s and 1s in the networks, Π =
(
π0 π1

)

– the topology of the phylogenetic tree;
– the edge length le of each edge e, i.e., the number of changes along this edge;
– for each edge length le, its corresponding substitution matrix, Ps(le), which repre-

sents the mutation probability between 0 and 1.

The substitution matrices depend on edge length: the longer the edge, the higher the
mutation probabilities. We choose a Ps(1) for edge length 1 and calculate Ps(le) for
le ≥ 2 using an exponential distribution, Ps(le) = P le

s (1).

4.3 Refining the Leaves

The underlying principle is simple: phylogenetically close organisms are likely to have
similar regulatory networks; thus independent network inference errors at the leaves
get corrected in the ancestral reconstruction process. Obviously, however, if too much
evolution occurred, the ancestral reconstruction process itself generates errors. Thus
a crucial aspect of our algorithm is how to use ancestral networks at various heights
above the leaves to refine the leaves. We ran large series of experiments under various
conditions (not shown); all showed an expected increase in accuracy when moving to
the parents of the leaves, eventually replaced by a decrease when moving too far above
the leaves. On the basis of our results, we chose to use only the immediate parents of the
leaves for refinement—but note that these parents are themselves the product of a global
ML inference and thus reflect the structure of the entire phylogeny.
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4.4 A Fast Oblivious Refinement Algorithm

Our first algorithm, RefineFast, is designed to run quickly; it reposes complete trust in
the networks associated with the parents of the leaves, using them to replace, rather than
refine, the leaf networks.

1. From the current leaves, infer ancestral nodes using FastML.
2. For each leaf, pick its parent and evolve it (according to the length of the edge to

the leaf and its substitution matrix) to generate a new child.
3. Use these new children to replace the old leaves.
4. Repeat Steps 1–3 until the total size of the leaf networks stabilizes.

We can use the same substitution matricesPs(le) in both Step 1 and Step 2, but choosing
different substitution matrices can accelerate convergence.

The algorithm is deliberately oblivious: it uses the original networks only in the
ancestral reconstruction, after which it replaces them with a sample network drawn
from the distribution of possible children of the parent. When the original networks are
noisy (a common occurrence), this simplistic procedure does quite well.

4.5 A Nonoblivious Refinement Algorithm

To use the information still present in the original leaf networks in the refinement step,
we developed an ML-based refinement algorithm, RefineML. To use the existing leaf
sequences, we assign each site of each leaf a belief (confidence) coefficient, kb, which
varies between 0.5 and 1. In the DBN framework, these coefficients can be calculated
from the conditional probability table (CPT) parameters of the predicted networks. For
each leaf i, we calculate the variables Li(a) and Ci(a), as defined in Sec. 2.3, where a
is the character value of the parent of leaf i inferred by FastML. Fix a site; then, using
the notation introduced in Sec. 2.3, the RefineML algorithm can be described as follows:

1. Learn the CPT parameters for the leaf networks reconstructed by the base inference
algorithm and calculate the belief coefficient kb for every site.

2. From the current leaves, infer ancestral sequences using FastML.
3. For each leaf i with value b, let Qi(c) = kb if b = c, 1 − kb otherwise; then set

– Li(a) = maxc∈S pac(li) ×Qi(c)
– Ci(a) = arg maxc∈S pac(li) ×Qi(c)

4. For each leaf i, assign its most likely character from the variable Ci(a).

5 Experimental Design

In order to evaluate the accuracy gains provided by our boosting algorithms, we need
simulated data, as they allow us to control the parameters and, more importantly, to get
an absolute assessment of accuracy. Ideally, such simulation should be complemented
by applications to real data, but such data currently exist only for tiny examples—
indeed, we hope that our positive results will incite researchers to collect such data on
a larger scale. Simulations may lack realism and may also introduce a systematic bias



Boosting the Performance of Inference Algorithms 251

in the results. We cannot assess the severity of the first problem, but we take specific
precautions against systematic bias, in both the simulations and the analysis.

We generate test data from three pieces of information: the phylogenetic tree, the
network at the root, and the substitution matrix (which is in turn influenced by the
evolutionary rate). We use a wide variety of phylogenetic trees from the literature (of
modest sizes: between 20 and 60 taxa) and several choices of root networks, the latter
variations on part of the yeast network from the KEGG database [13], as also used by
Kim et al. [14]; we also explore a wide range of evolutionary rates. Our networks are of
modest size, with 16 genes each—this selection makes the gene-expression tables less
“tall” and thus, at least in principle, less prone to generate errors in reconstruction, thus
presenting a more challenging case for a boosting algorithm.

We need quantitative relationships in the networks in order to generate gene-
expression data from each network. Therefore, in the data generation process, we use
adjacency matrices with signed weights. Weight values are assigned to the root network,
yielding a weighted adjacency matrix A = (aij). We can obtain the adjacency matrix
for its child, A′ = (a′ij), by mutatingA according to the substitution matrix and repeat-
ing as we traverse down the tree to obtain weighted adjacency matrices at the leaves.
In other words, we evolve the weighted networks down the tree according to the model
parameters—standard practice in the study of phylogenetic reconstruction [12,16].

To generate gene-expression data from the weighted networks, we use both Yu’s
GeneSim [23] and DBNSim, our own design based on the DBN model.

5.1 Gene-Expression Data Generated by DBNSim

For DBNSim, we follow [15], using binary gene-expression levels, where 1 and 0 indi-
cate that the gene is, respectively, on and off. Denote the expression level of gene gi by
xi, xi ∈ {0, 1}; if mi nodes have arcs directed to gi in the network, let the expression
levels of these nodes be denoted by the vector y = y1y2 · · · ymi and the weights of
their arcs by the vector w = w1w2 · · ·wmi . From y and w, we can get the conditional
probability Pr(xi|y). Once we have the full parameters of the leaf networks, we gener-
ate simulated time-series gene-expression data. At the initial time point, the expression
level of gene gi is generated by the initial distribution Pr(xi); at time t, its expression
level is generated based on y at time t− 1 and the conditional probability Pr(xi|y).

5.2 Gene-Expression Data Generated by GeneSim

GeneSim [23] can produce simulated gene-expression values for a given weighted
network as well as generate arbitrary network structures. In contrast to our DBN-
Sim method, GeneSim gives continuous gene-expression levels. Denoting the gene-
expression levels of the genes at time t by the vector x(t), the values at time t + 1 are
calculated according to x(t + 1) = x(t) + (x(t) − z)C + ε, where C is the weighted
adjacency matrix of the network, the vector z represents constitutive expression values
for each gene, and ε models noise in the data. The values of x(0) and xi(t) for those
genes without parents are chosen uniformly at random from the range [0, 100], while the
values of z are all set to 50. The term (x(t)− z)C represents the effect of the regulators
on the genes; this term needs to be amplified for the use of DBI, because of the required
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discretization. We use a factor ke with the regulation term (set to 7 in our experiments),
yielding the new equation x(t+ 1) = x(t) + ke(x(t) − z)C + ε.

5.3 Testing under Various Methods

With two data generation methods, DBNSim and GeneSim, and two network inference
algorithms as our base algorithms, DBI and DEI, we can conduct experiments with dif-
ferent combinations of data generation methods and inference algorithms to verify that
our boosting algorithms work under all circumstances. First, we use different data gen-
eration methods with the same inference algorithm. Since the binary gene-expression
data generated by DBNSim does not fit DEI, we use DBNSim and GeneSim to generate
data for DBI. We generate 200 time points for each gene-expression matrix, running the
generation process 10 times to obtain mean and standard deviation. Second, we apply
DBI and DEI to datasets generated by GeneSim to infer the networks. Since DEI does
not accept large datasets (with many time points), here we used smaller datasets than
the previous group of experiments with 75 time points, yielding expression level matrix
of size 16 × 75. We run the generation process 20 times for each choice of tree struc-
ture and parameters and calculate mean and standard deviation. Finally, we conduct
experiments with various evolutionary rates.

5.4 Comparing with the Bourque and Sankoff Approach

Bourque and Sankoff’s algorithm [6], thereafter the B&S algorithm, also uses phylo-
genetic information to improve the inference of gene networks. We therefore conduct
experiments, using continuous data, to compare our approach to theirs.

5.5 Where Is the Important Information?

Although we use only the direct parents to refine the leaves at each iteration, the leaves
receive information from the whole tree, since the FastML algorithm assigns states to
every internal node based on global information. We claim that the use of this global in-
formation is necessary. To verify this claim, we build a variation of our algorithms, that
we call RefineLocal, where the ancestral reconstruction stops once the parents of leaves
are reached. The resulting ancestral reconstruction, in other words, is now limited to
exactly the parts of the tree used in the leaf refinement. RefineLocal works with both Re-
fineFast and with RefineML, since it does not alter the refinement phase of the algorithm.

Part of the improvement is due to noise averaging, taking advantage of the indepen-
dence in errors among the leaf networks. We claim that noise averaging not based on
the correct phylogeny cannot produce the type of improvement we see. To verify this
claim, we build a procedure that we call RefineRandomTree, which runs our full refine-
ment procedures (either one), but does it on a tree where the initial inferred networks
were randomly assigned to leaves. Since the tree topology is unchanged, the averag-
ing effect over the data remains globally similar, but the phylogenetic relationships are
destroyed. We run 100 such randomized tests and report the mean behavior.
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Fig. 1. ROC curves for DBI and boosting algorithms on the datasets generated by DBNSim

5.6 Measurements

We want to examine the predicted networks at different levels of sensitivity and
specificity. For DBI, on each dataset, we apply different penalty coefficients to predict
regulatory networks, from 0 to 0.5, with an interval of 0.05, which results in 11 discrete
penalty coefficients. For each penalty coefficient, we apply RefineFast, RefineML, Re-
fineLocal, and RefineRandomTree on the predicted networks. For DEI, we also choose
11 thresholds for each predicted weighted connection matrix to get networks on various
sparseness levels. For each threshold, we apply RefineFast, RefineLocal, and RefineRan-
domTree on the predicted networks. We measure specificity and sensitivity to evaluate
the performance of the algorithms and plot the values, as measured on the results for
various penalty coefficients (for DBI) and thresholds (for DEI) to yield ROC curves.
Recall that in such plots, the larger the area under the curve, the better the results.

6 Results and Analysis

Space constraints prevent us from showing more than a sample of our results. We show
results on two representative trees: tree T1 has 41 nodes on 6 levels and is better bal-
anced than tree T2, which has 37 nodes on 7 levels. Both trees were generated with an
expected evolutionary rate of 2.2 events (gain or loss of a regulatory arc in the network)
per edge and resulting leaf networks have from 23 to 38 edges.

6.1 On Boosting under Different Experimental Settings

Different gene-expression data generation methods, same inference algorithm.
Fig. 1 shows the average performance of RefineFast, RefineML, and DBI on 10 noiseless
datasets generated by DBNSim on trees T1 (left) and T2 (right). Throughout the range of
parameters, our two algorithms clearly dominate DBI, with RefineML also dominating
the simpler RefineFast: for every penalty coefficient, both sensitivity and specificity are
improved from DBI to RefineFast and further improved from RefineFast to RefineML,
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Fig. 2. ROC curves for DBI and boosting algo-
rithms on the datasets generated by GeneSim
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Fig. 3. Results for DBI and DEI with Refine-
Fast boosting on GeneSim generated datasets

as easily seen on the right. Sample standard deviations of sensitivity and specificity
for these three methods on the noiseless datasets on T1 are shown as ellipses, the loci
of one standard deviation around each point. The separation between the curves is al-
most always larger than the standard deviations, so that our assertions of dominance
of one method over another hold, not only on average, but also in the vast majority of
cases. Also, as this figure demonstrates, the boosting effect remains similar on different
phylogenies—and so we present results only on T1 hereafter.

All three algorithms behave on the noisy datasets much as on the noiseless ones.
Our refinement algorithms yield more improvement on the noisy datasets, which are
closer to the real data and thus cause more difficulties for DBI methods, yielding a
larger margin for improvement. We thus show results for noiseless datasets only, as
the level of improvement caused by our algorithms can only increase as the noise level
in the data increases. Fig. 2 shows the results of the three algorithms on the noiseless
datasets generated by GeneSim on T1. The boosting effects are much the same as seen
in Fig. 1, but it is clear that the DBI base algorithm does worse on the datasets generated
by GeneSim than on those generated by DBNSim, as might be expected.

Different inference algorithms, same gene-expression data generation method. The
datasets used in this experiment are generated by GeneSim. Fig. 3 shows the ROC
curves of DBI and DEI, along with RefineFast boosting, on the same datasets; the re-
finement algorithm clearly dominates the base algorithms.

Different evolutionary rates. The expected evolutionary rate (average edge length)
was fixed in all experiments presented above. High rates of evolution cause various
difficulties in phylogenetic reconstruction; we thus expect our method to become less
effective as evolutionary rates increase. To study this problem, we conducted experi-
ments on tree T1 with a root network of 16 nodes and 24 edges, using different evo-
lutionary rates to generate the leaf networks. Fig. 4 shows ROC curves for RefineML
and DBI with evolutionary rates of 2.32, 4.76 and 6.67 on noiseless datasets. The loss
in performance as the rate of evolution increases is clear for both methods; since DBI
itself suffers (perhaps because some networks produced in the simulation violate im-
plicit assumptions), the loss in performance of RefineML is a combination of worsened
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Fig. 5. Performance for B&S and RefineFast
based on DBI and DEI

leaf networks returned by DBI and worsened ancestral reconstruction by FastML. Yet
boosting is evident in all cases and performance remains excellent at the very high
evolutionary rate of 4.76: most paths from the root to a leaf in the tree have 5 edges
and so, at that rate, have an expected length of 23.5, so that the expected number of
changes from the root network almost equals the number of edges of that network—a
very challenging problem and one that is remarkably well solved here.

6.2 On Performance with Respect to the B&S Algorithm

Since B&S requires continuous time-series gene-expression data, we use the same
datasets, generated by GeneSim, as in Fig. 3. Fig. 5 presents the performance of B&S
and RefineFast based on both DBI and DEI. The results of B&S are shown as a cloud
of points, obtained under different parameter settings. B&S does better than plain DEI,
but is clearly dominated by our RefineFast based on DEI, meaning that our refinement
algorithm gains more improvement than B&S does.

6.3 On Applying ML Globally

We described earlier RefineLocal, a variant of our algorithms that infers ancestral net-
works only for the part of the tree that is used in the refinement phase. We use this
algorithm to show that the improvement wrought in the leaves by our algorithms uses
the phylogenetic information of the whole tree, not just the information present in the
subforest induced by direct parents of leaves. Fig. 6(a) compares the performance of
RefineFast with that of its localized version on noiseless datasets generated by DBN-
Sim (the same datasets as in Sec. 6.1), while Fig. 6(b) does the same for RefineML
on the same datasets. The plots are very similar: RefineLocal is clearly worse than the
original algorithms, especially in terms of sensitivity. In fact, RefineLocal based on Re-
fineFast does worse than DBI—due to the fact that the ancestral inference procedure
introduces significant additional errors when limited to small subtrees. On the other
hand, RefineLocal based on RefineML outperforms DBI—indicating that there is sig-
nificant information present in the leaves, independent of the ancestral reconstruction.
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Fig. 6. ROC curves for DBI and RefineLocal, showing RefineFast (left) and RefineML (right)
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Fig. 7. ROC curves for DBI and RefineRandomTree, with RefineFast (left) and RefineML (right)

6.4 On Phylogenetic Information

In Sec. 5.5 we introduced RefineRandomTree, which carries out our full algorithms,
but on a tree where the leaves have been reshuffled randomly. Its purpose is to demon-
strate that the improvements we observe are not due entirely to noise averaging among
the leaf networks. Fig. 7 compares the performance of RefineFast (left) and RefineML
(right) run on the correct phylogenetic tree with the average performance (over 100
runs) of the same algorithm run after randomly reshuffling leaf labels. Both RefineFast
and RefineML show clearly worse performance on the reshuffled trees than on the cor-
rect one. The results on the shuffled trees are still better than the base algorithm DBI,
which shows the error averaging effect of the trees. However, this improvement de-
pends on the performance of the base algorithm: in other experiments (not shown) with
larger gene-expression datasets, where DBI does better, RefineFast on the shuffled trees
does not outperform DBI, while RefineML with shuffled trees does. Overall, the results
demonstrate the value of correct phylogenetic data, the value of the information present
in the original leaf networks, and the averaging effect of the trees.
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7 Conclusions and Future Work

We described algorithms for boosting the accuracy of regulatory network inference
on related organisms using a phylogenetic approach and gave experimental results
demonstrating the effectiveness of these algorithms. Our algorithms yield significant
gains in both sensitivity and specificity under all conditions and can, in principle,
be used with any favorite network inference tool and any favorite phylogenetic
reconstruction algorithm. Further assessments of the sensitivity of our methods to the
accuracy of the branch length estimates and of their ability to correct for systematic
errors in gene expression levels are planned.

Our approach requires comparable gene-expression data for orthologous regulatory
networks, or the networks themselves, for a fair number of organisms; while cost and
technical feasibility are no longer major obstacles to the accumulation of such data, en-
suring comparability remains challenging, although we hope that our promising results
will encourage researchers to consider collecting such data.

Many improvements to our approach are clearly possible, from refined models of
network evolution to more precise handling of ancestral networks. Our approach to the
use of phylogenetic information in network inference is not limited to transcriptional
regulatory networks: it can be used, with suitable adaptations, for other types of sig-
nalling and metabolic networks.
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Abstract. We present a new, Bayesian method for inferring haplotypes
for unphased genotypes. The method can be viewed as a unification
of some ideas of variable-order Markov chain modelling and ensemble
learning that so far have been implemented only separately in some of
the state-of-the-art methods. Specifically, we make use of the Context
Tree Weighting algorithm to efficiently compute the posterior probabil-
ity of any given haplotype assignment; we employ a simulated anneal-
ing scheme to rapidly find several local optima of the posterior; and we
sketch a full Bayesian analogue, in which a weighted sample of haplotype
assignments is drawn to summarize the posterior distribution. We also
show that one can minimize in linear time the average switch distance,
a popular measure of phasing accuracy, to a given (weighted) sample of
haplotype assignments. We demonstrate empirically that the presented
method typically performs as well as the leading fast haplotype inference
methods, and sometimes better. The methods are freely available in a
computer program BACH (Bayesian Context-based Haplotyping)

1 Introduction

Large-scale genotyping – that is, measuring the genomic variation at hundreds to
millions of marker loci for tens to thousands of subjects – has become a common
approach to the genetic mapping of complex traits and to the discovery of the
genomic structure and variation in general. The abundance of single-nucleotide
polymorphisms (SNPs) in the human genome, in particular, may enable powerful
association analyses as well as detecting larger chromosomal rearrangements,
such as deletion [1,2,3] and inversion [4] polymorphisms, using efficient statistical
and computational methods.

Crucial to methods that utilize multilocus genotypes is the modelling of
haplotypes, the maternal and paternalmaterial that constitute a genotype. As hap-
lotypes tend to be inherited as large blocks, broken only occasionallyby recombina-
tions, they carry important information about ancient single-point mutations and
larger-scale structural changes. Unfortunately, the usual genotyping technologies
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cannot reliably measure the haplotypes per se, but only the unphased genotypes,
that is, for any two loci it cannot be determined which of the measured alleles be-
long to the same haplotype, be it maternal or paternal. Thus, haplotypes appear
as central latent variables in genotype analysis methods.

While the precise use of haplotypes should depend on the particularities of
the data analysis problem at hand, it is plausible to test a model of haplotypes
in the somewhat isolated problem of haplotype inference: given a set of multilo-
cus genotypes, find good estimates of the underlying haplotype pairs, called a
haplotype assignment. Indeed, this problem has attracted much attention in the
recent years, and a variety methods have been proposed.

The state-of-the-art methods for haplotype inference are based on various
ideas. Since Clark’s [5] rule-based approach, several likelihood based methods
that estimate “independent” haplotype frequencies over a short window of mark-
ers using an expectation–maximization (EM) algorithm or using related Gibbs
sampling have been presented [6,7,8,9]; a sort of divide and conquer technique,
called partition ligation, is commonly employed to handle larger numbers of
markers. A more sophisticated method is implemented in HAP [10], based on
fitting a perfect or almost perfect phylogeny model to short overlapping marker
windows and solving conflicts to optimality using dynamic programming. Of the
existing methods, the most accurate is perhaps PHASE [8]. It is a Bayesian
Markov chain Monte Carlo method that samples haplotypes from a posterior
distribution defined by a mosaic model, in which every haplotype is modelled
as a concatenation of fragments extracted (fairly independently) from the other
haplotypes. A drawback of PHASE is that it is impractically slow on large geno-
type samples. Three faster methods based on Hidden Markov models and so-
phisticated EM algorithms, HIT [11], GERBIL [12], and fastPHASE [13], were
developed independently. Of these methods, fastPHASE, which uses an ensemble
learning technique, seems the most accurate on average. In another direction,
fast and accurate phasing methods have been built on variable-order Markov
models that can be efficient in capturing rare higher-order dependencies. Such
models are implemented in HaploRec [14] based on fast search for frequently oc-
curring haplotype fragments, and more recently in Beagle [15] based on efficient
estimation of related probabilistic automata and an EM-type search.

In this paper, we present a new haplotype inference method that can be viewed
as a principled and unified treatment of certain key ideas underlying some of the
state-of-the-art methods. Like in PHASE, we take a Bayesian approach in which
haplotype inference relies on the posterior distribution of haplotype assignments.
However, we model haplotypes using a variable order Markov model similar to
those used in HaploRec and Beagle. Instead of fitting the model to given hap-
lotypes, we show that the Bayesian approach of averaging over all the model
parameters, including the context trees, can be done efficiently by using the
celebrated Context Tree Weighting algorithm (CTW), originally developed for
efficient data compression [16]. The remaining challenge is to efficiently sample
haplotype assignments proportionally to the posterior, or, alternatively, to max-
imize the posterior probability. To this end, we consider two kinds local moves
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in the space of haplotype assignments: a forward sampling of a haplotype pair
according to the given genotype and a simpler phase switch operation. Then, in
the spirit of the ensemble EM technique of fastPHASE, we employ a simulated
annealing procedure to rapidly find several local optima of the posterior distri-
bution. We also sketch an analogous full-Bayesian method based on annealed
importance sampling [17], which outputs a sample of independently drawn hap-
lotype assignments, each associated with a real-valued weight. (An efficient im-
plementation of this full-Bayesian method is work-in-progress.) Finally, we show
that one can find in linear time a Bayes-optimal haplotype assignment, that is,
one that minimizes the average switch distance, a popular measure of phasing
accuracy, to a given (weighted) sample of haplotype assignments. This useful ob-
servation is technically rather simple and has appeared in other guises earlier: an
unweighted, non-Bayesian setting is implemented in fastPHASE [13] and treated
more formally recently [18]. An implementation of the methods is freely available
in a computer program BACH (Bayesian Context-based Haplotyping).

Using the HapMap data [19] and simulated data, we have empirically com-
pared the phasing accuracy of BACH against PHASE, fastPHASE, HAP, HIT,
HaploRec, and Beagle. The results agree with earlier observations that PHASE,
when computationally feasible, is generally the most accurate. Of the fast meth-
ods, HaploRec and BACH performed the best on average. Our study also con-
tributes to mutual comparison of the aforementioned current leading methods,
many of which were not included in some earlier comparison studies [20].

2 A Bayesian Variable Order Markov Model

Consider m SNPs labelled in their physical order by the numbers 1, 2, . . . ,m.
We assume that at each SNP in the population there occur two alleles, which
we denote by 0 and 1. A haplotype is a sequence h1 · · ·hm where hj ∈ {0, 1} is
an allele at SNP j. Two haplotypes h and h′ determine an unphased genotype
g(h, h′) = g = g1 · · · gm, where each single-SNP genotype gj takes value 0 if
hj = h′j = 0, value 1 if hj = h′j = 1, and value 2 otherwise.

We aim at a model that given n genotypes g = (g1, . . . , gn) yields good
estimates of the underlying 2n haplotypes h = (h1, h2, . . . , h2n−1, h2n), called a
haplotype assignment; we denote the two haplotypes underlying gi by h2i−1 and
h2i. We take a Bayesian approach and define a joint probability distribution of
g and h, from which the posterior distribution of the haplotypes is obtained by
conditioning on g. Based on the posterior distribution, “optimal” estimates of
haplotype frequencies as well as individual haplotype pairs can be determined;
see Sect. 5.

We begin with a basic decomposition:

p(h|g) ∝ p(h, g) = p(g|h) p(h) .

Here the first term is easily specified: it evaluates to 1 if for every i, the genotype
gi is the unique genotype determined by h2i−1 and h2i, and to 0 otherwise.
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Fig. 1. The full context tree of marker j with maximum depth D = 3 for a sample
of 12 haplotypes. Each node in the tree corresponds to a suffix. The numbers in each
node are the empirical counts of 0s and 1s for marker j following the corresponding
suffix. The gray nodes form a smaller context tree. The corresponding suffixes in the
sample are shown on gray background.

The crucial part is the modelling of the latter term, the joint distribution of
the 2n haplotypes. We next derive a variable-order Markov model, starting with
the chain rule that holds for any probability distribution:

p(h) =
m∏

j=1

p(hj |h1, . . . ,hj−1) ;

here and henceforth hj denotes the alleles of the haplotypes at SNP j, that
is, hj = (h1

j , h
2
j , . . . , h

2n−1
j , h2n

j ). The variable-order Markov model makes the
restrictive, yet useful and biologically plausible assumption that hj depends
only on a relatively small context, i.e., the preceding markers. This assumption
is reflected with linkage disequilibrium decreasing with marker distances.

We make the usual assumption that these contexts, or suffixes, form the leaves
of a context tree. A context tree is a rooted tree where a node at depth d is a
sequence u = hj−d · · ·hj−1 ∈ {0, 1}d; the node is either a leaf or the parent of
its two children, 0u and 1u. Thus, a context tree is uniquely determined by the
leaves of the tree. See Fig. 1 for an illustration.

More formally, we specify a context tree by a function cj that with each
partial haplotype h1 · · ·hj−1 associates a suffix haplotype hj−d · · ·hj−1, a leaf of
the context tree, with some context length d; we denote the set of these suffixes
by Sj = Sj(cj). Let cj(h1 · · ·hj−1) denote the composition of the suffixes over
all the 2n partial haplotypes. By marginalizing over the unknown function cj
with respect to its prior distribution, we obtain

p(hj |h1, . . . ,hj−1) =
∑

cj

p(cj) p
(
hj

∣
∣cj(h1 · · ·hj−1)

)
. (1)

We have implemented a simple prior over the context trees by restricting the
maximum depth of a tree to D and assigning a probability (1/2)N to each tree
with N nodes at depth less than D. This prior is the same as in the original CTW
method and stems from the idea of a recursive construction of a context tree by
either splitting or stopping at each node, independently, with equal probabilities.
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The prior for stopping the tree construction could also have been set for each
marker separately to reflect the effect of the marker distances.

To complete the model specification, it remains to specify the term
p
(
hj

∣
∣cj(h1 · · ·hj−1)

)
. To this end, we associate with each leaf s of the con-

text tree cj a parameter θs that gives the probability that a haplotype has a
1 at marker j, given that its suffix up to marker j − 1 is s. Considering these
parameters independent a priori and assigning each a Beta(1/2, 1/2) prior yields
a closed-form expression [21]:

p
(
hj

∣
∣cj(h1 · · ·hj−1)

)
=
∏

s∈Sj

ρ(as, bs) ,

where as and bs are the counts of haplotypes up to marker j with suffixes s0
and s1, respectively, and the leaf score ρ(as, bs) can be written [21] as

ρ(as, bs) =
Γ
(

1
2 + as

)
Γ
(

1
2 + bs

)

Γ
(

1
2

)
Γ
(

1
2

)
Γ
(
1 + as + bs

) =
1
2 · 3

2 · 5
2 · · · (as − 1

2 ) · 1
2 · 3

2 · · · (bs −
1
2 )

(as + bs)!
.

We have also experimented with a variant of the leaf score, defined as

ρ̃(as, bs) =
(

as + 1
2

as + bs + 1

)as
(

bs + 1
2

as + bs + 1

)bs

.

Like ρ(as, bs), this score can be interpreted as the probability of observing as

suffixes s0 and bs suffixes s1, but now with a fixed estimate of the θs parameter
(rather than integrating θs out). Intuitively, ρ̃(as, bs) may perform better than
ρ(as, bs) when the assumed Beta prior fits poorly with the observed data. Some-
what surprisingly, in our preliminary experiments ρ̃(as, bs) yielded consistently
better results than ρ(as, bs), a phenomenon we currently do not fully understand.
In Sect. 6 we report results only for ρ̃(as, bs).

3 The Context Tree Weighting Algorithm

We apply the CTW algorithm [16] – originally developed for compressing a single
binary string – to efficiently evaluate the sum over context trees for haplotype
(1). The idea is to compute for each possible haplotype suffix s the sum of scores
of all possible subtrees rooted at s; denote this sum by ρs. If the length of s is
the maximum D, then s must be a leaf and ρs is set to ρ(as, bs). Otherwise, ρs

is obtained by averaging over the case that s is a leaf of a context tree and the
case that it is has two children, 0s and 1s:

ρs :=
1
2
ρ(as, bs) +

1
2
ρ0sρ1s . (2)

It is easy to show [16] that this recurrence yields

ρλ =
∑

cj

2−N(cj)
∏

s∈Sj(cj)

ρ(as, bs) = p(hj |h1, . . . ,hj−1) ,
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where λ denotes the empty sequence, i.e., the root of a context tree, and N(cj)
is the number of nodes at depth less than D in cj .

The algorithm can be implemented to run in time O(nD) for a single marker
j. First, one builds a trie of substrings starting at j − 1 backwards, as shown in
Fig. 1. For each node s in this trie, the corresponding counts as and bs can be
computed according the values on marker j; this takes time O(nD). Similarly,
the values ρ(as, bs) for all nodes s can be computed in an incremental fashion
in time O(nD). Finally, the recurrence (2) can be solved along the trie in time
O(nD). Note that only the haplotype suffixes that are present in the data need
to be considered (as ρ(0, 0) = 1, the subtrees with zero counts will average to 1).

4 Finding Plausible Haplotypes Using Local Search

The posterior probability p(h|g) of a haplotype assignment h, obtained by av-
eraging over all possible context trees and the involved parameters, provides a
Bayesian measure for the plausibility of h. Ideally, we would like to explore the
entire posterior distribution to fully take into account the uncertainty about each
single assignment. Unfortunately, this seems computationally infeasible. What
seems more practical is to quickly find several local optima, which then, when
combined, provide a reasonable summary of the posterior distribution.

4.1 Local Search and Simulated Annealing

To maximize the posterior p(h|g), we have implemented a simulated anneal-
ing method that starts with an arbitrary haplotype assignment and then pro-
ceeds iteratively with simple phase switch moves that change the haplotype pair
(h, h′) = (h2i−1, h2i) for a randomly picked genotype gi.

Phase Switch: Select the pair of haplotypes (h, h′) for a random genotype
g and a random marker j and switch the phase of the partial haplotypes
of h and h′ at markers k ≥ j. That is, the new haplotype pair for g is
(h1 · · ·hj−1h

′
j · · ·h′m, h′1 · · ·h′j−1hj · · ·hm).

A proposed phase switch is accepted with probability min{1, A1/τ}, where
A is the ratio of the posterior probabilities of the proposed and the current
haplotype assignment, and τ ≥ 0 is a decreasing temperature parameter. Each
such an iteration can be computed in time O(D2) by storing the haplotype pair
of each genotype as its switch sequence (see Sect. 5) and maintaining the tries
used in the CTW algorithm for computing p(h|g). The posterior is evaluated
with a large depth, D = 40; temperature τ is set to 1 and the best assignment
found in mn steps is taken as the starting assignment in the next batch. Three
more such batches are run with τ = 1/2, 1/4, 0, each batch started from the best
assignment found so far. The procedure is repeated for some number of times,
20 in our experiments, to obtain several local optima of the posterior, with the
genotypes reversed in every other iteration as in Beagle [15].
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We have found that the above described local search converges rapidly to a
local optimum, but also that the quality of the optimum is highly sensitive to
the initial haplotype assignment. We therefore designed a slower but otherwise
more effective forward sampling heuristic for finding good initial assignments.

Forward Sampling:
1. Set the haplotypes h arbitrarily such that they match the genotypes g.
2. For each genotype gi, draw a new haplotype pair (h2i−1, h2i) from
p(h2i−1, h2i|h−i, g) ∝ p(h|g), where h−i consists of the remaining haplo-
type pairs in h. Repeat this 10 times.

3. Return the centroid (see Sect. 5) of the last 5 samples.

Forward sampling can be implemented relatively efficiently using the idea of
forward–backward sampling algorithm of hidden Markov models (see [15] and
references therein). As that HMM algorithm is well-known, we here only mention
some key features of the present application and omit most of the technical
details. First, observe that given a genotype gi, it suffices to consider drawing the
haplotype h2i−1, since h2i is fully determined by gi and h2i−1. Second, notice that
the jth allele of h2i−1 depends on the alleles at markers j−1, j−2, . . . , j−D; the
state of these D alleles corresponds to a hidden state in an analogous HMM. The
time complexity of the sampling procedure essentially depends on the number
of possible states, 2D; the effect of the number of markers is linear, and the
involved transition probabilities are easily obtained by statistics precomputed by
the CTW algorithm for computing p(h|g). Thus, sampling a haplotype pair can
be implemented in time O(mD2D) for a single genotype. We also note that the
term 2D can be improved to 2k, where k is the maximum number of heterozygous
sites of g in any D consecutive markers.

4.2 Sampling Haplotypes from the Posterior Distribution

We next sketch an annealed importance sampling (AIS) method [17] to draw
haplotype assignments from the posterior distribution p(h|g) conditional on the
given n genotypes, g. In this simulated annealing type MCMC technique, the
idea is to generate a sequence h(1),h(2), . . . ,h(T ) along a smooth chain of dis-
tributions π(1), π(2), . . . , π(T ). Only the last configuration, h(T ), will be retained
with an appropriately defined weight w

(
h(T )

)
; the procedure is repeated some

number of times to obtain a collection H of independent weighted samples. For
the posterior expectation of any function of interest, ψ(h), an unbiased estimate
is obtained as

∑
h∈H w(h)ψ(h)

/∑
h∈H w(h) [17].

For concreteness, consider a simple annealing scheme of the form π(t)(h) ∝
f (t)(h) = p(h|g)t/T , with, say, T = 1000. First, h(1) is drawn from π(1) by
running a Metropolis algorithm, say, mn steps; suitable proposal distributions
can be constructed based on the forward sampling and phase switch moves
described above. Then, for t = 1, . . . , T − 1, an assignment h(t+1) is drawn
based on h(t) using an analogous Metropolis kernel that now leaves π(t+1) in-
variant. Finally, the last configuration, h(T ), is stored together with a weight
w
(
h(T )

)
=
∏T−1

t=1 f (t+1)
(
h(t)

)/
f (t)

(
h(t)

)
=
(
p(h(1))p(h(2)) · · · p(h(T ))

)1/T
.



266 P. Rastas, J. Kollin, and M. Koivisto

5 Minimization of the Expected Switch Distance

In principle, the output of Bayesian inference of haplotypes is the posterior distri-
bution. In practice, and especially for comparing different methods, one however
needs to provide a single estimate for the haplotype pair underlying each ob-
served genotype. How such an estimate should be constructed depends not only
on the posterior but also on the cost assigned for mistakes in the estimate. The
cost can usually be specified by a loss function, �, that associates two haplo-
types pairs, {h, h′} and {ĥ, ĥ′}, a real-valued loss �({h, h′}, {ĥ, ĥ′}); the total
cost over all genotypes is assumed to be a sum of the individual losses. Given
a loss function, a Bayes-optimal estimate is one that minimizes the posterior
expected loss. When a posterior is summarized by a (weighted) sample of hap-
lotype assignments, the expected loss is approximated by a (weighted) average
over the sample.

While it is often not possible to reliably infer the correct haplotype pair,
except for very short regions, it is usually possible to provide an estimate that is
close to the true haplotypes in terms of the switch distance [22], a loss function
commonly used in haplotype inference. The switch distance of two haplotype
pairs {h, h′} and {ĥ, ĥ′}, denoted by sd({h, h′}, {ĥ, ĥ′}), is the number of phase
switches needed to turn {h, h′} into {ĥ, ĥ′}. For example, if the true pair is
{000000, 111111} then the switch distance to {000111, 111000} is 1 while the
switch distance to {000110, 111001} is 2.

Even though finding a Bayes-optimal estimate seems hard in general, it turns
out that the special case of switch distance can be solved efficiently, in time
linear in the sample size. To see this, first observe that any haplotype pair
{h, h′} compatible with a fixed genotype g is bijectively related to its switch
sequence ξ = (ξ1, . . . , ξk−1) defined by ξs = |λs − λs+1|, where k is the number
of heterozygous sites of g and λs ∈ {0, 1} encodes (in an arbitrary way) the
two possible phases of the sth heterozygous site of g; furthermore, the switch
sequence can be constructed in linear time. Second, we observe that if {h, h′}
and {ĥ, ĥ′} are two haplotype pairs compatible with g, and ξ and ξ̂ their switch
sequences, then sd({h, h′}, {ĥ, ĥ′}) =

∑k
s=1 |ξs − ξ̂s| = ||ξ − ξ̂||1, the 1-norm of

the vector ξ − ξ̂. Thus, it remains to find a switch sequence ξ̂ that minimizes
∑

ξ∈Ξ

w(ξ)‖ξ − ξ̂‖1 ,

where Ξ denotes the multiset of switch sequences determined by the given sam-
ple of haplotype pairs, and w(ξ) is the weight of the haplotype assignment that
corresponds to ξ. Now, we know that for any set of binary sequences the cen-
troid with respect to the metric induced by the 1-norm is obtained simply by
coordinate-wise voting. This suffices for the unweighted case; see [18] for a some-
what more detailed argumentation. Having this, it is not difficult to see that the
weighted case can be solved by weighted voting: set ξ̂s to 1 if and only if

∑

ξ∈Ξ: ξs=1

w(ξ) >
∑

ξ∈Ξ: ξs=0

w(ξ) .
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Such a voting can obviously be carried out in time O(k|Ξ|). Combining these
observations gives

Theorem 1. Let g be a genotype over m SNPs and H a set of haplotype pairs
that are compatible with g, each pair associated with a real-valued weight. Then a
centroid, that is, a haplotype pair that minimizes the sum of the weighted switch
distances to the haplotype pairs in H, can be found in time O(m|H|).

6 Experimental Results

We have implemented the presented method in a prototype program BACH
(Bayesian Context-based Haplotyping) and compared its performance against
state-of-the-art software for haplotype inference on both real and simulated data.

6.1 Methods Compared

BACH is written in Java and the implementation is not optimized for speed. Cur-
rently, it contains only the simulating annealing method (with forward sampling
and phase switch using tuning parameters D = 8 and D = 40, respectively); the
annealed importance sampling analogue sketched in Sect. 4.2 is work-in-progress.

For comparison we included the latest versions of PHASE [23], fastPHASE
[13], Beagle [15], HaploRec [14], HIT [11], and HAP [10]. We included PHASE as
a reference, even though it took several hours to run on a single small (HapMap)
dataset; we did not try to run it for the much larger, simulated datasets. The
other tested methods scale well and take only some minutes or a few hours per
large dataset. Specifically, the time complexity of BACH (with fixed maximum
context length) is only linear, O(mn); relatively large constant factors, however,
render BACH the slowest of the fast methods. All methods except HAP were
available as stand-alone applications, which we ran on a regular desktop PC.
HAP was run on its web server, and due the amount of manual labour involved
in sending the data and fetching the results, we tested HAP only on 24 of the
the real datasets, selected at random.

We also tested deviating from the default parameters of the compared meth-
ods, and report the best results obtained. For example, we set ”-nsamples=25”
in Beagle for the real data, as suggested by its manual; this improved Beagle’s
performance slightly. For HaploRec we used option “-p S”, here referred to as
HaploRec-S, to use a segmentation model. By default, HaploRec uses a variable-
order Markov model (option “-p VMM AVG”), here referred to as HaploRec-V.
For HIT, we used ten founders (K = 10).

6.2 Datasets

The real data, containing 132 datasets, were obtained from the HapMap
database [19]. These datasets contain samples from human populations YRI
(Yoruba) and CEU (Utah), from which there were 30 SNP trios available. The
HapMap database contains 120 haplotypes inferred from these trios, which we
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took as the ground truth and converted them into 60 genotypes. From each chro-
mosome we selected 100 SNPs in such a way that the average distance between
adjacent SNPs is close to either 1, 3 or 9 kb. Thus, by CEU-3k (other combi-
nations analogously) we refer to the datasets from the CEU population with an
average SNP spacing of 3 kb.

To generate larger datasets, we followed the example of Browning and Brown-
ing [15] and used COSI [24] with the best-fit parameters to simulate 2,000 haplo-
types of 1 Mb in length from a ”European” population. We generated 100 sparse
and dense datasets. The sparse datasets were filtered by first removing all SNPs
with minimum allele frequency (MAF) ≤ 0.05, and then selecting at random 250
SNPs. We then sampled a subset of 120 haplotypes, and again eliminated SNPs
with MAF ≤ 0.05. The SNPs were then selected to the final data set by selecting
an informative subset by the method of Carlson et al. [25]. In the resulting set
of SNPs, either the SNP was genotyped or there was at least one genotyped
SNP that had the squared correlation coefficient r2 ≥ 0.7 with the omitted SNP.
For dense sets the filtering was similar, except that we sampled 1,428 markers
instead of 250, and the r2 threshold for the tagging algorithm was 0.9. These
datasets are referred to as Dense and Sparse. The former had median SNP count
of 101, and the latter 367 markers.

6.3 Comparison of Phasing Accuracy

We evaluated the phasing accuracy of each method in terms of the switch er-
ror, that is, the switch distance between the predicted and the true haplotypes
(see Sect. 5) divided by the maximum switch distance. We found that by av-
erage switch error (Table 1) BACH is among the most accurate methods on
both the HapMap datasets and the synthetic datasets. On the HapMap datasets
PHASE is superior, whereas HAP (on the selected 24 datasets) is consistently
less accurate than the rest (details not shown).

We also compared the methods pairwise and examined the percentage of the
HapMap datasets on which one method was more accurate than another method
(Table 2). We observed that, after PHASE, the most accurate methods were
fastPHASE, BACH, and HaploRec-S, with no clear order. Note that HAP and
the synthetic datasets were not included in this comparison.

Table 1. Average switch errors of the tested methods

PHASE fastPHASE BACH Beagle HaploRec-S HaploRec-V HIT

CEU-1k 0.0299 0.0343 0.0348 0.0405 0.0364 0.0376 0.0375
CEU-3k 0.0652 0.0692 0.0665 0.0764 0.0692 0.073 0.0745
CEU-9k 0.144 0.146 0.147 0.164 0.147 0.153 0.159
YRI-1k 0.0407 0.0579 0.0597 0.0645 0.0540 0.0601 0.0642
YRI-3k 0.0931 0.117 0.113 0.125 0.111 0.122 0.126
YRI-9k 0.189 0.204 0.198 0.223 0.193 0.204 0.220
Sparse - 0.0398 0.0305 0.0317 0.0288 0.0316 0.0442
Dense - 0.0169 0.0125 0.0116 0.0133 0.0145 0.0190
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Table 2. Percentage of HapMap datasets won by a method on a column vs. a method
on a row

PHASE fastPHASE BACH Beagle HaploRec-S HaploRec-V HIT

PHASE - 20.5 19.7 5.3 18.9 9.1 7.6
fastPHASE 78.0 - 48.5 17.4 55.3 34.8 15.2

BACH 79.5 45.5 - 18.2 53.8 28.0 15.2
Beagle 93.9 79.5 79.5 - 87.1 72.7 55.3

HaploRec-S 78.8 42.4 42.4 12.9 - 25.8 16.7
HaploRec-V 90.2 59.8 71.2 23.5 73.5 - 29.5

HIT 92.4 82.6 82.6 37.9 78.8 67.4 -

7 Concluding Remarks

We have presented a Bayesian implementation of variable-order Markov model-
ing of haplotypes. The promise of this approach is in its robustness, as it is not
based of fitting a single model to the data. As we showed, the required sum over
models can be efficiently computed using the context tree weighting algorithm
[16]. We believe there is room for improving our heuristics for optimizing or
exploring the resulting objective function (the posterior distribution). Yet, the
techniques implemented in BACH were sufficient for demonstrating the poten-
tial of the approach: the phasing accuracy of BACH was competitive to the very
best of the existing fast haplotype inference methods.

The context tree weighting algorithm has been previously successfully applied
to protein classification [26]. In this application, a variable-order Markov model
was extended to wild-card symbols that match to every alphabet symbol. Such
wild-cards could be incorporated into our haplotype inference method as well.

References

1. Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E., Pritchard, J.K.: A high-
resolution survey of deletion polymorphism in the human genome. Nat. Genet. 38,
75–81 (2006)

2. Corona, E., Raphael, B.J., Eskin, E.: Identification of deletion polymorphisms
from haplotypes. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI),
vol. 4453, pp. 354–365. Springer, Heidelberg (2007)

3. Kohler, J.E., Cutler, D.J.: Simultaneous discovery and testing of deletions for dis-
ease associations in SNP genotyping studies. Am. J. Hum. Genet. 81, 684–699
(2007)

4. Bansal, V., Bashir, A., Bafna, V.: Evidence for large inversion polymorphisms in
the human genome from HapMap data. Genome Res. 17, 219–230 (2007)

5. Clark, A.G.: Inference of haplotypes from PCR-amplified samples of diploid pop-
ulations. Mol. Biol. Evol. 7, 111–122 (1990)

6. Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype
frequencies in a diploid population. Mol. Biol. Evol. 12, 921–927 (1995)

7. Long, J.C., Williams, R.C., Urbanek, M.: An E-M algorithm and testing strategy
for multiple-locus haplotypes. Am. J. Hum. Genet. 56, 799–810 (1995)



270 P. Rastas, J. Kollin, and M. Koivisto

8. Stephens, M., Smith, N., Donnelly, P.: A new statistical method for haplotype
reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001)

9. Niu, T., Qin, Z., Xu, X., Liu, J.: Bayesian haplotype inference for multiple linked
single-nucleotide polymorphisms. Am. J. Hum. Genet. 70, 157–169 (2002)

10. Halperin, E., Eskin, E.: Haplotype reconstruction from genotype data using im-
perfect phylogeny. Bioinformatics 20, 104–113 (2004)

11. Rastas, P., Koivisto, M., Mannila, H., Ukkonen, E.: A hidden Markov technique
for haplotype reconstruction. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS
(LNBI), vol. 3692, pp. 140–151. Springer, Heidelberg (2005)

12. Kimmel, G., Shamir, R.: Genotype resolution and block identification using likeli-
hood. In: Proceeding of the National Academy of Sciences of the United States of
America (PNAS), vol. 102, pp. 158–162 (2005)

13. Scheet, P., Stephens, M.: A fast and flexible statistical model for large-scale pop-
ulation genotype data: Applications to inferring missing genotypes and haplotypic
phase. Am. J. Hum. Genet. 78, 629–644 (2006)

14. Eronen, L., Geerts, F., Toivonen, H.: Haplorec: efficient and accurate large-scale
reconstruction of haplotypes. BMC Bioinformatics 7, 542 (2006)

15. Browning, S., Browning, B.: Rapid and accurate haplotype phasing and missing-
data inference for whole-genome association studies by use of localized haplotype
clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007)

16. Willems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The context-tree weighting
method: Basic properties. IEEE Trans. Inform. Theory 41, 653–664 (1995)

17. Neal, R.M.: Annealed importance sampling. Statist. Comput. 11, 125–139 (2001)
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Abstract. Recombination plays an important role in shaping the ge-
netic variations present in current-day populations. We consider popula-
tions evolved from a small number of founders, where each individual’s
genomic sequence is composed of segments from the founders. We study
the problem of segmenting the genotype sequences into the minimum
number of segments attributable to the founder sequences. The minimum
segmentation can be used for inferring the relationship among sequences
to identify the genetic basis of traits, which is important for disease
association studies. We propose two dynamic programming algorithms
which can solve the minimum segmentation problem in polynomial time.
Our algorithms incorporate biological constraints to greatly reduce the
computation, and guarantee that only minimum segmentation solutions
with comparable numbers of segments on both haplotypes of the geno-
type sequence are computed. Our algorithms can also work on noisy data
including genotyping errors, point mutations, gene conversions, and miss-
ing values.

1 Introduction

Recombination plays an important role in shaping the genetic variations present
in current-day populations. Understanding the genetic variations and the ge-
netic basis of traits is crucial for disease association studies. In this paper, we
assume an evolution model (previously proposed and studied in [U, WG]) where
a population is evolved from a small number of founder sequences. A real-world
biological scenario is the Collaborative Cross (CC). The CC [THW, C] is a large
panel of 1000 recombinant inbred (RI) mouse strains that were generated from
a funnel breeding scheme initiated with a set of 8 founder strains followed by
20 generations of inbreeding. These 8 genetically diverse founder strains capture
nearly 90% of the known variations present in the laboratory mouse. The result-
ing RI strains have a population structure that randomizes the known genetic
variation, which will provide unparallel power for disease association studies.

Given a set of founder haplotype sequences, a sequence in the generated pop-
ulation is composed of segments from the founders. It is of interest to identify
and label these segments according to their contributing founder. Although the
segmentation for a haplotype sequence may be straightforward to compute, in
many cases the sequence to be segmented is a genotype sequence for which the
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two haplotypes are not known completely and they may have different segmen-
tations. For example, the genotype sequence for the strains generated during
the intermediate generation in a 20 inbreeding generations of the CC contains
two different haplotypes. In this paper, we study the segmentation problem of
genotype sequences with the optimization for the minimum number of segments
contained in the two associated haplotypes. Furthermore, we extend this basic
model to include additional biologically-motivated constraints as well as noise.
Since each autosome undergoes, on average, one recombination per meiosis, one
expects that the number of founder switches per haplotype at a given gener-
ation of breeding to be comparable. Moreover, noise may exist in the founder
sequences and the genotype sequence to be segmented. Sources of genotyping
noise are both technical and biological. They include point mutations, gene con-
versions, genotyping errors, etc. Missing genotyping values are also very common
in biological data sets.

Similar but different models were studied in [U, WG]. Ukkonen [U] first pro-
posed the founder set reconstruction problem under the assumption that the
sample set is evolved from a small set of founders. A dynamic programming
algorithm was proposed which computes a minimum number of founders with
a given set of sample haplotype sequences, where a segmentation of all the se-
quences in the sample set can be derived which contains the minimum number
of founder switches. Wu and Gusfield [WG] proposed improved polynomial time
algorithms for haplotype as well as genotype sample sequences for the special
case where there are only two founders. Different from the problems considered
in [WG, U], we study the problem where the set of founder sequences are already
known, and compute the minimum segmentation for genotype sequences under
biologically-relevant constraints and noise. A motivating biological example is
the segmentation of the genotype sequences obtained from immediate genera-
tions of the CC to estimate the location of the recombination breakpoints. There
is other related work on inferring the structure of the variation of the sequences,
which include identifying haplotype blocks [DRSHL, GSNM, SHBCI], computing
the phylogenies [GEL, G], etc.

In this paper, we propose two dynamic programming algorithms to compute
the minimum segmentations for genotype sequences. Our algorithms run in poly-
nomial time and consider biological constraints of the genotype segmentation
problem, i.e., the number of segments in both haplotypes are comparable. More-
over, our algorithms account for the potential noise sources in the data including
point mutations, gene conversions, genotyping errors, and missing values.

2 The Minimum Segmentation Problem

Assume that we have a set of founding haplotypes FS = {F1, . . . , Fn, . . . , FN}.
Each haplotype sequence is of length L: Fn = fn

1 f
n
l . . . f

n
L , where fn

l ∈ {0, 1}.
Given an input sequence from a population which is derived exclusively from
the founder set FS, we are interested in finding a possible segmentation of the
sequence, where each segment is inherited from the corresponding region of one
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of the founders. We first consider the simple case where the input sequence is a
haplotype, and then investigate the more interesting case where the input is a
genotype sequence.

Given a haplotype sequence, H = h1 . . . hL, (hl ∈ {0, 1}), a segment of H
is denoted as Hk = hsk

hsk+1hsk+Lk−1, where sk is the starting position of
Hk, and Lk is the length of Hk. We consider a segmentation of H which di-
vides the entire sequence into an ordered list of disjoint segments Seg(H) =
{H1, . . . , Hk, . . . , HK}, where each segment Hk is identical to the correspond-
ing region of one of the founders and K is the number of segments in Seg(H). In
other words, for each segment Hk = hsk

hsk+1hsk+Lk−1, there exists a founder
Fn = fn

1 f
n
l . . . f

n
L such that hsk+li = fn

sk+li
, for li = 0, 1, . . . , Lk − 1. Further-

more, a minimum segmentation is defined as the segmentation which contains
the minimum number of segments. We denote the minimum segmentation as
MinSeg(H) = {H1, . . . , HKmin}, where Kmin = |MinSeg(H)| is the number of
segments in MinSeg(H).

If the input is a genotype sequence, we know that it represents two copies
of different haplotype sequences, Ha and Hb. Assume that the genotype se-
quence is G = g1 . . . gL, where gl ∈ {0, 1, 2}. A site l is homozygous if gl = 0
(ha

l = hb
l = 0) or gl = 1 (ha

l = hb
l = 1); a site l is heterozygous if Ha and

Hb take different alleles, in which case, gl = 2. The process of determining
whether ha

l = 0, hb
l = 1 or ha

l = 1, hb
l = 0 for a heterozygous site l is called

phasing. The procedure of determining the two haplotype sequences from the
genotype sequence by phasing all the heterozygous sites is called Haplotype In-
ference. For the genotype input case, a segmentation Seg(G) consists of seg-
mentations for both haplotype sequences: Sega(Ha) and Segb(Hb). The number
of segments in Seg(G) is the sum of the numbers of segments in Sega(Ha)
and Segb(Hb): |Seg(G)| = |Sega(Ha)| + |Segb(Hb)|. The minimum segmenta-
tion is the segmentation which contains the minimum total number of segments:
|MinSeg(G)| = min{|Seg(G)|}. Let MinSeg(G) = {Seg∗a(Ha), Seg∗b (Hb)}.

In this paper, we develop efficient algorithms for the minimum segmentation
problem especially for the genotype input case. In addition to the basic models,
there are other issues we may need to consider, such as genotyping errors, point
mutations, missing values, the balance of the number of segments in both hap-
lotypes, etc. We will explain later how we model these biological constraints and
noise in our solutions.

Solutions for Haplotype Input: Computing the minimum segmentation for
the haplotype input sequence is relatively easy and has been discussed in pre-
vious studies [WG, U]. A simple greedy algorithm can be applied to compute
a minimum segmentation solution by scanning from left to right. Assume that
the current site is i (initially it is site 1), and we have a minimum segmentation
solution for the part of the input sequence from site 1 to site i. Starting from
site i, we try to find the segment shared by the input sequence and one of the
founders which extends furthest to the right. This greedy algorithm generates
one of the minimum segmentation solutions.
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A graph-based dynamic programming algorithm can be used to compute all
minimum segmentation solutions given the input haplotype sequence and the
founder set. At a high level, we first compute all maximal shared intervals be-
tween the input sequence and each founder sequence. The maximal shared in-
terval between the input sequence and founder n is a region where the input
sequence is exactly the same as founder n. We consider each shared interval
as a node and connect two intervals with an edge if they overlap. In this way,
a minimum segmentation solution corresponds to a shortest path from a node
starting at the first site to a node ending at the last site. The complete set of the
shortest paths can be computed, which are all possible minimum segmentation
solutions.

3 Solutions for Genotype Input

The greedy algorithm and the graph-based algorithm for segmenting haplotype
input sequences cannot be easily applied on genotype input. The major issue
is that we do not know the exact sequences of the two haplotypes due to the
multiple possible allele pairs at heterozygous sites. Second, the minimum segmen-
tation solution for the genotype may not consist of the minimum segmentation
solutions for each haplotype sequence.

In the following discussion, we describe two dynamic programming algorithms
for solving the minimum segmentation problem for genotype input sequences.
The first algorithm considers each site separately, the second algorithm considers
a region of sites simultaneously, and is thus more efficient.
Site-based Dynamic Programming Algorithm: We consider for each site
l, the possible founders for the two haplotype sequences Ha and Hb. If site l
is a homozygous site, assuming gl = 0 (without loss of generality), we have
ha

l = hb
l = 0. Let ofa,l be the original founder where ha

l was inherited from
at site l. Then ofa,l must be one of the founders which also take 0 at site
l: ofa,l ∈ {Fn|fn

l = 0}. Similarly, we have the founder where hb
l was inherited

from as: of b,l ∈ {Fn|fn
l = 0}. Let fpl = 〈ofa,l, of b,l〉 denote the possible founder

pair at site l, we have the set of all possible founder pairs as FP l = {fpl|fpl ∈
{Fn|fn

l = 0} × {Fn|fn
l = 0}}. If site l is a heterozygous site where gl = 2,

there are two possibilities: ha
l = 1 ∧ hb

l = 0 or ha
l = 0 ∧ hb

l = 1. Therefore, the
possible founder pairs for heterozygous site l is FP l = {fpl|fpl ∈ {Fn|fn

l =
0} × {Fn|fn

l = 1} ∪ {Fn|fn
l = 1} × {Fn|fn

l = 0}}. We compute the founder pair
set FP l for each site l.

Assigning a founder pair from FP l to each site l generates a segmentation of
the input genotype sequence. The number of segments of both haplotypes (of the
genotype) are the total number of founder switches between founder pairs of every
consecutive sites plus 2. Consider two neighboring sites l and l + 1. If the corre-
sponding founder pairs are fpl

ql
= 〈ofa,l

ql
, of b,l

ql
〉 (1 ≤ ql ≤ |FP l|) and fpl+1

ql+1
=

〈ofa,l
ql+1

, of b,l
ql+1

〉 (1 ≤ ql+1 ≤ |FP l+1|), the number of founder switches between
these two founder pairs FounderSwitch(fpl

ql
, fpl+1

ql+1
) can be computed as:
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FounderSwitch(fpl
ql

, fpl+1
ql+1

) =

����
���

0 : if ofa,l
ql

= ofa,l+1
ql+1 ∧ ofb,l

ql
= ofb,l+1

ql+1

1 : if ofa,l
ql

= ofa,l+1
ql+1 ∧ ofb,l

ql
�= ofb,l+1

ql+1 or

ofa,l
ql

�= ofa,l+1
ql+1 ∧ ofb,l

ql
= ofb,l+1

ql+1

2 : if ofa,l
ql

�= ofa,l+1
ql+1 ∧ ofb,l

ql
�= ofb,l+1

ql+1

(1)

Let Kmin(g1 . . . gl−1|fpl
ql

) be the minimum number of segments in any seg-
mentation solution over the subsequence g1 . . . gl which at site l takes the founder
pair fpl

ql
. The minimum number of segments over the entire genotype sequence

Kmin(g1 . . . gL) can be computed as:

Kmin(g1 . . . gL) = minfpL
qL

∈F P L{Kmin(g1 . . . gL−1|fpL
qL

)} (2)

The main recurrence of the dynamic programming algorithm is as follows:

Kmin(g1 . . . gl−1|fpl
ql

) = min
fpl−1

ql−1
∈F P l−1{Kmin(g1 . . . gl−2|fpl−1

ql−1)+

FounderSwitch(fpl−1
ql−1 , fpl

ql
)}

(3)

And initially,

Kmin(Φ|fp1
q1) = 2, ∀fp1

q1 ∈ FP 1 (4)

The solutions for this dynamic programming problem can be easily computed
by populating a table T of L rows where row l has at most |FP l| entries. The
entry T (l, ql), 1 ≤ ql ≤ |FP l| is filled with Kmin(g1 . . . gl−1|fpl

ql
) during the

computation. Row 1 is initialized according to Eq.(4), and row i+1 is computed
after row i. During the computation of T (l, ql) according to Eq.(3), we keep
the backtracking pointers from entry T (l, ql) to any T (l − 1, ql−1) where the
minimum values are obtained. In this way, we are able to obtain all the minimum
segmentation solutions.

There are at most N2 founder pairs for each site l, i.e., |FP l| ≤ N2, ∀l. There-
fore, the table we populate is of size O(LN2). It takes constant time to compute
FounderSwitch(fpl

ql
, fpl+1

ql+1
), then filling out a single entry in the table takes

O(N2) time. Therefore, the computational complexity for the entire algorithm
is O(LN4). The space complexity is O(LN2). For very long sequences and a
small number of founders, i.e., L# N4, the algorithm has linear time and space
complexity in terms of the length of the input sequence. If we keep multiple back-
track pointers for each entry while populating the table, we are able to obtain
all the minimum segmentation solutions.

Region-based Dynamic Programming Algorithm: For very long sequences,
we propose a more efficient algorithm which considers a subregion of the entire se-
quence instead of a site at a time.

We first consider the homozygous regions, which are the regions of homozy-
gous sites between any two consecutive heterozygous sites. Within a homozygous
region, both copies of the haplotype sequences are the same and we know the
exact allele at each site. Fig. 1 illustrates an example of a set of four founders
(F1 − F4) and a genotype input sequence G to be segmented. The length of
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Fig. 1. An example subregions. F1-F4 are four founder sequences. G is the genotype
sequence to be segmented. There are 15 sites in all sequences, where site 10 is the only
heterozygous site. R1 : [1, 9] and R2 : [11, 15] are the homozygous regions. Δ1-Δ5 are
the maximal shared intervals in R1. Δ6 and Δ7 are the maximal shared intervals in R2.
r1 − r8 are the subregions for the entire sequence, out of which r6 is the heterozygous
subregions, and the remaining are the homozygous subregions.

each founder and the genotype sequence is 15, with 14 homozygous sites and
1 heterozygous site (site 10). The homozygous regions are R1 = [1, 9] and
R2 = [11, 15]. For each homozygous region, we compute all the maximal shared
intervals between each founder and the haplotype sequences. A maximal shared
interval Δi is an interval over which a haplotype and a founder shares the same
allele at each site and the region cannot be extended further on either side. We
represent each maximum shared interval as a triple, for example,Δi : (Ii, Ha, Fn)
is a maximal shared interval between haplotype Ha and founder Fn over in-
terval Ii. Since both haplotypes are the same, a maximal shared interval for
haplotype Ha is also a maximal shared interval for haplotype Hb, therefore, the
maximal shared interval for the homozygous regions can also be represented as
Δi : (Ii, ∗, Fn). In Fig. 1, Δ1−Δ5 are the maximal shared intervals within region
R1 for both haplotype sequences. We divide each homozygous region Rj into a
set of subregions using the two end points of all maximal shared intervals inside
Rj . For example, in Fig. 1, R1 is divided into subregions r1, r2, r3, r4, and r5.
If we consider each heterozygous site as a 1-site subregion (e.g. r6 in Fig. 1),
together with all the subregions for the homozygous regions, we have a complete
set of subregions {rp} which cover the entire sequence (e.g., r1 − r8 in Fig. 1).

For each homozygous subregion rp, let fprp = 〈ofa,rp , of b,rp〉 be a possible
founder pair for subregion rp. We know that the set of possible founder pairs
is FP rp = {〈ofa,rp , of b,rp〉| ∃Δi1 = (Ii1 , ∗, ofa,rp), Δi2 = (Ii2 , ∗, of b,rp), where
Ii1 ⊇ rp, Ii2 ⊇ rp}. For example, the founder pair for the subregion r2 in Fig.
1 could be 〈F1, F1〉, or 〈F1, F2〉, or 〈F2, F1〉, or 〈F2, F2〉. For each heterozygous
subregion which is composed of a heterozygous site l, since hl

a and hl
b take

different alleles, any possible founder pair should consist of a founder taking
allele 1 and a founder taking allele 0. For example, in Fig. 1, the possible founder
pairs for r6 are 〈F1, F2〉, 〈F2, F1〉, 〈F2, F3〉, 〈F2, F3〉, 〈F2, F4〉, and 〈F4, F2〉.

Instead of considering each site, we consider each subregion in the dynamic
programming solution. Assign fp

rp
qp = 〈ofa,rp

qp , of
b,rp
qp 〉 to be the founder pair for
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subregion rp, where 1 ≤ qp ≤ |FP rp |, and fp
rp+1
qp+1 = 〈ofa,rp

qp+1 , of
b,rp
qp+1〉 to be the

founder pair for subregion rp+1, where 1 ≤ qp+1 ≤ |FP rp+1|. Similarly, we count
the number of founder switches between fp

rp
qp , fp

rp+1
qp+1 as:

FounderSwitch(fp
rp
qp , fp

rp+1
qp+1) =

�����
����

0 : if of
a,rp
qp = of

a,rp+1
qp+1 ∧ of

b,rp
qp = of

b,rp+1
qp+1

1 : if of
a,rp
qp = of

a,rp+1
qp+1 ∧ of

b,rp
qp �= of

b,rp+1
qp+1

of
a,rp
qp �= of

a,rp+1
qp+1 ∧ of

b,rp
qp = of

b,rp+1
qp+1

2 : if of
a,rp
qp �= of

a,rp+1
qp+1 ∧ of

b,rp
qp �= of

b,rp+1
qp+1

(5)

Let Kmin(r1 . . . rp−1|fprp
qp) be the minimum number of segments in any seg-

mentation solution over the subsequence covered by r1 . . . rp which takes the
founder pair fprp

qp at subregion rp. The minimum number of segments over the
entire genotype sequence Kmin(r1 . . . rP ) where rP is the last subregion can be
computed as:

Kmin(r1 . . . rP ) = minfp
rP
qP

∈F P rP {Kmin(r1 . . . rP−1|fprP
qP

)} (6)

The main recurrence of the dynamic-programming algorithm is as follows:

Kmin(r1 . . . rp−1|fp
rp
qp ) = min

fp
rp−1
qp−1∈F P p−1{Kmin(r1 . . . rp−2|fp

rp−1
qp−1)+

FounderSwitch(fp
rp−1
qp−1 , fp

rp
qp )}

(7)

And initially,
Kmin(Φ|fpr1

q1 ) = 2, ∀fpr1
q1 ∈ FP r1 (8)

We can also solve this dynamic programming problem by populating a ta-
ble T which contains P rows where row p has at most |FP rp | entries. Entry
T (p, qp), 1 ≤ qp ≤ FP rp is filled with Kmin(r1 . . . rp−1|fprp

qp) during the computa-
tion. There are at mostN2 founder pairs for each subregion rp, i.e., |FP rp | ≤ N2.
The table we populate is of size O(PN2). The computation of all the maximal
shared intervals is O(LN), and filling out each entry in the table costs O(N2).
Thus the computational complexity of region-based dynamic programming al-
gorithm is O(LN +PN4). Compared with the site-based algorithm which has a
time complexity of O(LN4), if P is much smaller than L, we can greatly reduce
the running time, especially for large L.

3.1 Enforcing the Constraints and Modeling Noise

Comparable Number of Founder Switches on Both Haplotypes: During
each meiosis autosomes undergo one recombination on average. Thus, during the
development of an recombinant inbred-line (RIL), one expects that the number
of founder switches per haplotype at each generation to be comparable.

During each mating in the evolving history, each of the two haplotypes may
be generated by a new recombination. Therefore, we may expect that for the
given genotype to be segmented, the number of segments for the two haplotype
sequences are comparable.
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For a segmentation Seg(G) of genotype sequence G, which is composed of
a segmentation Sega(Ha) on haplotype Ha and a segmentation Segb(Hb) on
haplotype Hb, we put an extra constraint on the minimum segmentation as
follows: the difference of the numbers of the segments in the two haplotypes is no
more than a threshold α: ||Sega(Ha)|−|Segb(Hb)|| < α, where α is a nonnegative
integer. The definition of the minimum segmentation for G is then modified as:
|MinSeg(G)| = min{|Seg(G)|}, where MinSeg(G) = {Seg∗a(Ha), Seg∗b (Hb)}
and ||Seg∗a(Ha)| − |Seg∗b (Hb)|| < α.

To compute the minimum segmentation solution with constraints, we pro-
pose an efficient heuristic which prunes out solutions that do not satisfy the
constraint before they are fully computed during the table population process.
This greatly reduces the computation, especially when there are a lot of mini-
mum segmentation solutions that do not satisfy the constraint. We will explain
how it works with the region-based algorithm. Assume that we have a founder
set {F 1, . . . , FN}, and a genotype sequence G. For any minimum segmentation
solution MinSeg(G) = {Seg∗a(Ha), Seg∗b (Hb)}, we have the following lemma:

Lemma 1. For any homozygous region R on G, and any minimum segmenta-
tion solution {Seg∗a(Ha), Seg∗b (Hb)}, let the set of segments in Seg∗a(Ha) which
completely fall inside R be Seg∗a(Ha) ∩ R, and the set of segments in Seg∗b (Hb)
which completely fall inside R be Seg∗b (Hb) ∩R, then we have

||Seg∗
a(Ha) ∩ R| − |Seg∗

b (Hb) ∩ R|| ≤ 2 (9)

Proof. Details of the proof are presented in [ZWMPVT].

Lemma 2. For a genotype sequence G containing Z heterozygous sites, any of
its minimum segmentation {Seg∗a(Ha), Seg∗b (Hb)} satisfies:

||Seg∗
a(Ha)| − |Seg∗

b (Hb)|| ≤ 3Z + 1 (10)

Proof. For more details, please refer to [ZWMPVT].

We can use Lemma 2 in the dynamic programming algorithm when we are pop-
ulating the table. Assume currently we are filling out the entry T (p, qp), i.e.,
we are computing Kmin(r1 . . . rp−1|fprp

qp) according to Eq.(7), which is the min-
imum segmentation for the subsequence from r1 to rp with fp

rp
qp as the founder

pair for rp. In addition to computing the minimum segmentation, we also keep
track of the difference between the number of segments over two haplotypes in
the minimum segmentation we have computed, δ(p, qp) = ||Seg∗a(Ha[r1, rp])| −
|Seg∗b (Hb[r1, rp])||. Let the number of heterozygous sites in the remaining part
of the sequence be Z([rp+1, rP ]). Then if δ(p, qp) − (3Z([rp+1, rP ]) + 1) > α,
according to Lemma 2, we know that the corresponding solution will not be
able to generate a minimum segmentation solution for the entire sequence where
the difference between the number of segments on both haplotypes is less than
α. If the minimum segmentation solution we consider is from T (p− 1, qp−1) to
T (p, qp), then if δ(p, qp)−(3Z([rp+1, rP ])+1) > α, we will not add the backtrack
pointer from T (p, qp) to T (p− 1, qp−1).
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Modeling Point Mutation, Genotyping Errors and Gene Conversions:
There are both biological and technical resources of noise in genotyping, which
include point mutations and gene conversions, and genotyping errors. We con-
sider these potential noise sources in the data in our segmentation algorithms.

A point mutation or genotyping error can be treated as a single site mismatch
that falls within a shared interval between a copy of haplotype sequence and a
founder sequence. A gene conversion can be treated as a short sequence of mis-
matches that fall within a shared interval between a copy of haplotype sequence
and a founder sequence. In the following, we explain how we model these noise
sources in our region-based dynamic programming algorithm. We first consider
the point mutation, gene conversion, and genotyping error which happen side
a homogeneous range. During the computation of maximal shared intervals be-
tween sequence G and each founder Fn over a homozygous regionR, assume that
we have two maximal intervals Δ1, Δ2 between G and Fn which are over the in-
tervals I1 = [b1, e1] and I2 = [b2, e2]. We know that I1 and I2 are not overlapping
or touching. Let I1 be the interval on the left, i.e., e1 < b2 − 1. If e1 = b2 − 2,
then there is a single mismatch at site e1 +1 within the combined region [b1, e2].
Assume that both I1 and I2 are of enough length, then this single mismatch may
be a point mutation or genotyping error. Therefore, we create another shared
interval Δ3 between G and Fn over the single-site interval I3 = [e1 + 1, e1 + 1].
This interval has a probability of β < 1 to be a shared interval between G and
Fn. β is defined as the probability of a single mismatch inside a shared inter-
val being a point mutation or genotyping error. Similarly, if e1 < b2 − 2 but
b2 − 1 − e1 < gc, which means the gap between interval I1 and I2 is shorter
than a maximal possible length gc of a typical gene conversion, then this short
sequence of mismatches may be a gene conversion, assuming both I1 and I2 are
of enough length. We create another shared interval Δ4 between G and Fn over
the short interval I4 = [e1 +1, b2− 1]. This interval has a probability of γ < 1 to
be a shared interval between G and Fn. γ is defined as the probability of a short
sequence of mismatches inside a shared interval being a gene conversion. We can
consider the point mutation and genotyping error that happen at a heterozygous
site in a similar manner, where we check whether the heterozygous site is a single
mismatch falling into a shared interval, i.e. the shared interval to the left of the
heterozygous site and to the right of the heterozygous site are from the same
founder. The maximal shared intervals computed without considering noise are
of probability 1. By modeling the noise using intervals with probability less than
1, we can compute the minimum segmentation solution with desired noise tol-
erance θ < 1. When we compute each entry T (p, qp) in the table, we keep track
of the accumulated probability which is the multiplication of the probabilities
of the intervals in the founder pairs on the minimum segmentations solution so
far. We only keep the solution with the accumulated probability no less than θ.

Modeling Missing Values: Besides noise and incorrect values, there can also
be missing values in the data. Assume that the missing value is in founder Fn,
at site l, and the value at the same site on the sequence G is not missing. If l is a
homozygous site, we fill out fn

l using gl. If l is a heterozygous site, we consider fn
l
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can be either 0 or 1 when we create the founder pairs for this heterozygous site.
If the missing value is on G at site l, we consider it to be either 0 or 1, which
means this site can be in a maximal shared interval with any of the founder,
no matter whether the founder has a missing value at the same site or not. In
this way, we can generate the minimum segmentation solution with the smallest
possible number of segments. The missing values in both founders and genotype
sequences are filled with values in each solution (it may be filled with different
values for different minimum segmentation solutions).

4 Experimental Results

We tested the performance of our region-based dynamic programming algorithm
on the simulated data. As we presented earlier, the region-based algorithm has
less computational complexity than the site-based algorithm. We only demon-
strate the results on region-based algorithm.

The setof the founder sequences{Fn} and thegenotype sequenceG (correspond-
ing two haplotype sequencesHa,Hb) are generated so that: (a) The set of founders
are generated randomly, except that, at each site, there is at least a founder taking
0 and at least a founder taking 1, (b) The number of the heterozygous sites in G
is h rate × L where h rate is a parameter representing the occurrence rate of the
heterozygous sites,L is the total number of sites, and (c)Ha andHb are generated
by randomly patching up n seg random segments from the founders.

Note that, the segmentation during the generation provides a lower bound on
the number of segments in the minimum segmentation. The computed minimum
segmentation may not have the same number of segments on both haplotypes.
The code is implemented using Matlab, and the experiments are performed on
an Intel Core 2 Duo 1.6GHz machine with 3GB memory.

Running Time. We evaluated the running time by varying the number of
founders (N), the number of sites (L), the number of segments (n seg), and the
heterozygous sites occurrence rate (h rate).

Fig. 2(a) highlights the running time by varying the number of founders from
2 to 10. Other parameters are fixed to be L = 1000, n seg = 30, h rate = 0.01.
The complexity of the algorithm is O(LN + PN4), which is demonstrated by
the superlinear increase in the running time with increasing N . Fig. 2(b) shows
the running time with varying number of sites. All data sets contain 6 founders.
n seg for 10, 100, 1000, 5000, and 10000-site data sets are chosen to be 3, 8,
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Fig. 2. Running time with varying parameters
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Fig. 3. Segmentation results (better viewed in color)

30, 150, 300, respectively. h rate is 0.01 for all the data sets except for the
10-site set where the h rate is set to be 0.1 to guarantee 1 heterozygous site.
Both X-axis and Y-axis are in log scale, we can observe that the running time is
linear to the number of sites L. In Fig. 2(c), the running time decreases as n seg
increases. The reason is due to the increased number of founder pairs generated
from large shared intervals when n seg is small. The data sets have 1000 sites, 6
founders, and h rate is set to 0.01. Fig. 2(d) shows the increase of the running
time with increasing h rate. More heterozygous sites introduce more subregions
which cause the running time to increase. The data sets contain 1000 sites, 4
founders and n seg is set to 50.

Effect of Enforcing the Constraint. Table1 shows the resultson threedatasets
where different constraints are applied. As shown in the table, enforcing the con-
straint greatly reduces the number of minimum segmentation solutions generated.
The running timealsodecreaseswith the application of the constraints. For dataset
#1, there are 28 minimum segmentation solutions where both haplotypes take
the same number of segments. However, the number of solutions increases to 40
when the number of segments over the two haplotypes can differ by 1. Similarly,
for dataset #2, the number of solutions increased 5 times, and the run time also
doubled. A similar trend is observed for dataset #3.

Error Tolerance. We tested our algorithms on simulated data with point mu-
tation, genotyping errors, and missing values. Fig. 3 shows two example segmen-
tation results. In Fig. 3(a), the data set contains four founders {F1, F2, F3, F4}
each of which has 20 sites. The two copies of the haplotypes Ha and Hb, and
the corresponding genotype G is shown in the figure as the ground truth. A
random site chosen to take a genotyping error. The resulting genotype G′ has a
genotyping error (1 is mistaken as 0) at site 16. Our segmentation solution on
G′ is shown at the bottom of Fig. 3(a). Although F1 does not match G at site
16, F1 is still chosen as the founder in Sega and Segb, since site 16 is a single
mismatch inside a long shared interval with F1. Fig. 3(b) shows the result on a
data set with missing values. Two random sites (site 6 and site 10) are chosen
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Table 1. Effect of Enforcing the Constraint

dataset #1 #2 #3
parameters N = 4, L = 20 N = 2, L = 50 N = 6, L = 20

n seg = 4, h = 0.1 n seg = 8, h = 0.05 n seg = 6, h = 0.05
α 0 1 0 1 2 0 1

# solutions 28 40 92 276 460 6 356
running time (sec) 0.515 0.718 0.453 0.656 0.812 1.09 1.437

to be the sites with missing values. As shown at the bottom of the figure, our
algorithm still generates the correct minimum segmentation with the values at
both sites filled in. Fig. 3 is better to be viewed in color.

5 Conclusions

In this paper, we studied the minimum segmentation problem for genotype se-
quence given a set of founders. We proposed dynamic programming algorithms
which run in polynomial time. The algorithms can effectively handle the con-
straint which requires comparable number of founder switches on both haplo-
types. Moreover, the algorithms can deal with the noise in the data such as
genotyping errors, point mutations, missing values, etc.
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Abstract. In phylogenetics it is common practice to summarize collec-
tions of partial phylogenetic trees in the form of supertrees. Recently
it has been proposed to construct phylogenetic supernetworks as an al-
ternative to supertrees as these allow the representation of conflicting
information in the trees, information that may not be representable in
a single tree. Here we introduce SuperQ, a new method for constructing
such supernetworks. It works by breaking the input trees into quartet
trees, and stitching together the resulting set to form a network. The
stitching process is performed using an adaptation of the QNet method
for phylogenetic network reconstruction. In addition to presenting the
new method, we illustrate the applicability of SuperQ to three data sets
and discuss future directions for testing and development.

1 Introduction

In phylogenetics it is common practice to summarize a collection of phylogenetic
trees as a consensus tree [1] or, in case the trees are on different leaf sets (i.e.
they are partial trees), as a supertree [2]. However, this may result in information
loss due to conflicting groupings in the input trees that cannot be represented
in any single tree. In an attempt to remedy this problem various methods have
been recently proposed for constructing consensus/supernetworks rather than
trees [3,4,5,6,7]. Such networks have the advantage that they allow for the rep-
resentation of conflicting information, although at the price that a tree is no
longer necessarily reconstructed. They have been used for applications such as
visualizing large collections of trees (arising e.g. from Bayesian tree inference)
[4], and multiple gene tree analyses [7].

In this paper, we describe a new method for constructing supernetworks from a
collection of partial phylogenetic trees. Currently there are basically two meth-
ods available to construct supernetworks: Z-closure [7] and Q-imputation [3].

K.A. Crandall and J. Lagergren (Eds.): WABI 2008, LNBI 5251, pp. 284–295, 2008.
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Z-closure essentially works by converting the input trees into a set of partial
bipartitions, corresponding to the edges of the input trees, and then iteratively
applying a set-theoretical operation to produce a collection of bipartitions of the
total leaf set. This collection of bipartitions is subsequently represented in the
form of a split-network [8]. Q-imputation, on the other hand, first uses quartet
information to complete the partial trees to trees on the total leaf set, and then
constructs a consensus network for these trees. This is a split-network represent-
ing those bipartitions that are present in some large proportion of the completed
trees.

Our new method, SuperQ, works in a different manner. Each of the partial
trees is broken down into a collection of quartet trees, and the union of all of
these quartet trees is then stitched together to form a split-network. To perform
this stitching process we adapt the QNet algorithm for constructing phyloge-
netic networks from quartet trees [9,10]. One of the main technical difficulties
that we have to overcome to do this is to find a way to assign weights to the
edges in the resulting network. This difficulty arises as several quartet trees may
be missing after the break-up process, and QNet requires all possible quartet
trees. One of the main advantages of SuperQ over Z-closure and Q-imputation
is that it is guaranteed to generate a planar network, whereas the latter meth-
ods can potentially produce rather complex (and therefore difficult to interpret)
networks.

The rest of this paper is organized as follows. In the next section we describe
our new method. In Section 3 we illustrate the applicability of SuperQ by using
it on three datasets, and in Section 4 we discuss possible future directions for
the testing and further development of our method.

2 Methods

In this section we describe our method for constructing supernetworks. We first
introduce some terminology and notation – more details concerning these and
related concepts may be found in e.g. [11].

2.1 Terminology and Notation

Let X be a finite set. A quartet on X is a bipartition a1a2|b1b2 of a 4-element
subset {a1, a2, b1, b2} of X . By Q(X) we denote the set of all quartets on X . A
quartet system on X is a subset of Q(X). A quartet-weight function on Q(X) is
a map μ : Q(X) → R≥0.

A split of X is a bipartition A|B of X into two non-empty subsets A and B of
X . We denote the set of all splits ofX byΣ(X). A split system onX is a subset of
Σ(X). A split-weight function on Σ(X) is a map ν : Σ(X) → R≥0. The support
of a split-weight function ν is the split system supp(ν) = {S ∈ Σ(X) : ν(S) > 0}.

A split S = A|B of X extends a quartet q = a1a2|b1b2, denoted S $ q,
if {a1, a2} ⊆ A and {b1, b2} ⊆ B, or {b1, b2} ⊆ A and {a1, a2} ⊆ B. Every
split-weight function ν on Σ(X) induces a quartet-weight function μν defined
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Fig. 1. (a) An X-tree with X = {x1, . . . , x7}. (b) The subtree induced by
{x1, x2, x4, x5}. (c) A split network on X. Splits are represented by parallel edges,
e.g. the bold edges correspond to the split x1x6x7|x2x3x4x5. The weight of the splits
is usually represented by the length of the corresponding edges in the network.

by putting
μν(q) =

∑

S∈Σ(X),S�q

ν(S)

for every quartet q ∈ Q(X).
As a formalization of phylogenetic trees we now recall the concept of an X-tree

[11, ch. 2]. It is a graph theoretical tree with vertex set V and edge set E together
with a map ϕ : X → V such that ϕ−1(v) �= ∅ for every vertex v ∈ V of degree
at most 2. Note that removing any edge e of an X-tree T = (V,E, ϕ) breaks T
into two subtrees with vertex sets V1 and V2, respectively, which induces a split
Se = ϕ−1(V1)|ϕ−1(V2) of X associated to edge e. An edge-weight function on an
X-tree T = (V,E, ϕ) is a map ω : E → R≥0.

Note that an X-tree T = (V,E, ϕ) with an edge-weight function ω induces a
split-weight function νT on X given by

νT (S) =

{
ω(e) if S = Se for some edge e ∈ E,

0 else,

for every split S ∈ Σ(X), and also a quartet-weight function μT defined by
setting μT = μνT . Also note that the weight of the pendent edges of T does
not influence μT . Formulated in terms of split-weight functions ν, μν does not
depend on the weight assigned by ν to the trivial splits of X , that is, splits
A|B ∈ Σ(X) with min{|A|, |B|} = 1.

To illustrate some of the definitions given above, Figure 1(a) depicts an edge
weighted X-tree T with X = {x1, . . . , x7}. Associated to edge e of T is the split
Se = x1x2|x3x4x5x6x7 of X . In Figure 1(b) we show the subtree T ′ of T spanned
by the 4 elements in {x1, x2, x4, x5}. Note that μT (x1x2|x4x5) = 5, that is, the
induced weight of this quartet is the total weight of those edges in T ′ that are
neither on the path from x1 to x2 nor on the path from x4 to x5.

2.2 Description of the Method

The input for our method is a collection T = {T1, T2, . . . , Tt} of Xi-trees, Ti =
(Vi, Ei, ϕi), each with edge-weight function ωi : Ei → R≥0. Define X =

⋃t
i=1Xi.

Our goal is to summarize the information contained in the collection T in the
form of a split-weight function ν on Σ(X) in such a way that the split system
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SuperQ(T )

Input: T = {T1, T2, . . . , Tt} a collection that contains for every
i ∈ {1, . . . , t} an Xi-tree Ti with an edge-weight function ωi.

Output: A split-weight function ν on Σ(
�t

i=1 Xi) with the property
that supp(ν) is circular.

1. Compute X =
�t

i=1 Xi.
2. Compute the quartet-weight function μ∗ on Q(X).
3. ΣT = QNet(X, μ∗).
4. Compute the quartet system QT .
5. Fix an ordering q1, . . . , qr of the quartets in QT .
6. Fix an ordering S1, . . . , Ss of the splits in Σ∗

T .
7. Compute the vector μT .
8. Compute the reduced topological matrix M .
9. Find an initial solution y∗ to the non-negative least squares problem (1).
10. For every k ∈ {1, . . . , s} set up the linear program Πk and compute λk.
11. Define the split-weight function ν on Σ(X) according to (2).
12. return ν.

Fig. 2. Pseudocode for an algorithm that computes a weighted circular split system
from a collection of edge weighted partial trees

supp(ν) has the following property: There exists an ordering x1, x2, . . . , xn of X
such that for every split A|B ∈ supp(ν) there are j, k ∈ {1, . . . , n}, j ≤ k, such
that A = {xj , . . . , xk} or B = {xj , . . . , xk}. In general split systems with this
property are known as circular split systems [12]. Any such split system can be
represented in the form of an outer-labeled planar split network (see Figure 1(c)
for a simple example, and cf. [8,13] for more details concerning these networks
and how they can be used to represent split systems).

In Figure 2 we present pseudocode summarizing our algorithm SuperQ. After
computing the set X (Line 1) we compute a quartet-weight function μ∗ on Q(X)
(Line 2) as follows. First we construct from the quartet-weight function μTi on
Q(Xi) a quartet-weight function μi on Q(X) by defining

μi(q) =

{
1

|{j∈{1,...,t}:q∈Q(Xj)}| · μTi(q) if q ∈ Q(Xi),

0 else,

for every quartet q ∈ Q(X). From this we then define a quartet-weight function
μ∗ on Q(X) by setting μ∗(q) =

∑t
i=1 μi(q) for every q ∈ Q(X). Intuitively, μ∗

assigns to a quartet q = a1a2|b1b2 ∈ Q(X) the average weight that is induced
on q by those input trees Ti with {a1, a2, b1, b2} ⊆ Xi.

Next (Line 3) the quartet-weight function μ∗ is input into the QNet algorithm
[9,10]. As an intermediate step this algorithm constructs a maximum circular
split system ΣT ⊆ Σ(X). Hence, the rest of the algorithm (Lines 4-12) is con-
cerned with assigning non-negative weights to splits in Σ∗

T , the set of non-trivial
splits in ΣT .
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To explain the difficulties that arise in the process, recall that the original
QNet algorithm computes these weights (for details see [10]) using a non-negative
least squares approach as described in e.g. [14]. However, in the context of our
method we have to overcome the following problem: Let Q0 = {q ∈ Q(X) : ∀i ∈
{1, . . . , t} (q �∈ Q(Xi))} be the set of quartets in Q(X) that are neither supported
nor contradicted by any tree in the collection T . Note that the quartet-weight
function μ∗ assigns weight 0 to the quartets in Q0 but the input trees do not
naturally give rise to a weighting of these quartets. Therefore, when we compute
a weighting ν of the splits in Σ∗

T such that the induced quartet-weight function
μν is as close as possible (in the least squares sense) to μ∗ we need to ignore the
quartets in Q0.

To describe our adaption of the non-negative least squares approach taken by
the original QNet algorithm more formally, define QT = Q(X)\Q0, r = |QT | and
s = |Σ∗

T |. Note that, since ΣT is a maximum circular split system, s =
(|X|

2

)
−|X |

[12]. Now, fix an arbitrary ordering q1, . . . , qr of the quartets in QT and an
arbitrary ordering S1, . . . , Ss of the splits in Σ∗

T . We define an r × s-matrix
M = (mjk) by setting mjk = 1 if Sk $ qj and mjk = 0 otherwise. We call M
the reduced topological matrix.

We then solve the following non-negative least squares problem: compute a
column vector y = (y1, . . . , ys)� with entries in R≥0 such that

r∑

j=1

(μ∗(qj) − zj)2 (1)

is minimum where z = (z1, . . . , zr)� = M · y. Note that the entries of vector y
are the weights assigned to the splits in Σ∗

T , and the entries of vector z are the
weights induced on the quartets in QT . Also note that if the reduced topological
matrix M has full rank then we obtain a unique solution vector y to this non-
negative least squares problem. Otherwise we use the following strategy.

View the quartet-weight function μ∗ restricted to QT as a column vector
μT = (μ∗(q1), . . . , μ∗(qr))�, let ‖u‖ denote

∑r
j=1(uj)2 for every vector u =

(u1, . . . , ur) ∈ R
r, and 0 denote the vector (of appropriate dimension) with all

entries equal to zero. For two vectors y = (y1, . . . , ys) and y′ = (y′1, . . . , y
′
s) we

use y ≥ y′ to express the fact that yk ≥ y′k for every k ∈ {1, . . . , s}. Define
δopt = min{‖μT − M · y‖ : y ∈ R

s, y ≥ 0}. Then the set of all solutions to
the non-negative least squares problem (1) corresponds to the set of vectors
Dopt = {y ∈ R

s : ‖μT −M · y‖ = δopt, y ≥ 0}. We then aim to compute for
every split Sk, 1 ≤ k ≤ s, a lower bound λk on the weight that this split is
assigned over all solutions to the non-negative least squares problem (1), that
is, λk = min{yk : (y1, . . . , ys) ∈ Dopt}.

To this end, let ker(M) = {y ∈ R
s : M · y = 0} be the null-space or kernel of

M . As a starting point we compute an arbitrary element y∗ of Dopt using the
algorithm NNLS by Lawson and Hanson [15, pp. 160-165]. Note that y∗ + y′ ∈
Dopt for every y′ ∈ ker(M) with the property that y∗ + y′ ≥ 0. Moreover, every
element y ∈ Dopt can be written as y = y∗ + y′ for some y′ ∈ ker(M), since the
non-negative least squares problem (1) restricted to the orthogonal complement
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of ker(M) has a unique solution. Hence, defining Kopt = {y′ ∈ ker(M) : y∗+y′ ≥
0}, it follows that Dopt = y∗ +Kopt. Consequently, for every k ∈ {1, . . . , s} the
computation of the lower bound λk can be formulated as the following linear
program Πk:

objective: minimize h(y) = h(y1, . . . , ys) = yk

subject to: y∗ + y ≥ 0
M · y = 0,

which can be solved using standard linear programming techniques. Putting
λ =

∑s
k=1 λk/s, the output split-weight function ν of our method is then defined

by

ν(S) =

⎧
⎪⎨

⎪⎩

λk if S = Sk ∈ Σ∗
T ,

λ if S is a trivial split of X,
0 else,

(2)

for every split S ∈ Σ(X). Clearly, supp(ν) ⊆ ΣT and, thus, supp(ν) is circular.
Note that ν provides a very conservative estimate of the weights of the splits

in Σ∗
T – if a split S is assigned a positive weight ν(S) then S is assigned at least

this weight in every solution to the non-negative least squares problem (1). To
every trivial split of X we assign the average weight of a split in Σ∗

T . This is
done to improve the readability of the resulting split network.

2.3 Implementation

We implemented our algorithms for computing the quartet-weight function μ∗

and subsequently applying QNet in JAVA. Our approach to estimate the weight
of the splits in Σ∗

T was implemented in C using the GNU Linear Programming
Kit (GLPK) version 4.21. The output is visualized using the current version
of the SplitsTree program [16]. The examples we present below were processed
on a 1.7 GHz desktop computer with 500MB RAM under Linux. As additional
information we also computed the rank of the reduced topological matrix with
MATLAB using the build-in function rank.

3 Examples

To illustrate the applicability of SuperQ, we present the output for 3 biological
data sets. For the first data set, in which one of the input trees contains all
taxa, this yields a reduced topological matrix M of full rank and, hence the
non-negative least squares problem (1) has a unique solution. For the other two
datasets M doesn’t have full rank, therefore, (1) has no unique solution, and so
the weighting of the splits was computed via the linear programs Πk.

The first data set consists of seven gene trees for microgastrine wasps which
originally appeared in [17] and was used as an example for Q-imputation in
[3]. The total number of taxa is 45. In Figure 3 we depict the supernetwork
constructed using SuperQ. It took approximately 15 minutes to compute this
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network. The taxa in capital letters form an outgroup which is clearly grouped
together in the supernetwork produced by SuperQ.

The supernetwork for the wasp dataset obtained by Q-imputation presented
in [3, p. 64] displays similar major groupings and is almost a tree. In contrast, the
network constructed by SuperQ shown in Figure 3 displays much more conflicting
signal. However, the smaller amount of conflicting signal in the supernetwork in
[3] might be due to the fact that only those splits that are present in at least
two of the trees imputed from the input trees are represented by the network.

For comparison purposes we also applied the Z-closure method [7] to the wasp
data set. We used the implementation of this method available in the current
version of SplitsTree [16], employing dimension filter 2 to obtain a network that
can be easily visualized. The resulting split network is depicted in Figure 4. For
dimension 3 or greater the network becomes very dense and hard to draw. A
rough visual comparison between the supernetworks in Figures 3 and 4 reveals
that major groupings are very similar although they are more pronounced in
the network constructed by SuperQ. In particular, the split that separates the
outgroup from the other taxa in Figure 4 has a relatively small weight compared
to those splits that conflict with it.

The second data set consists of five gene trees for fungal species which was
published in [18,19] and used as an example for Z-closure in [7]. The total number
of taxa is 63. This is the largest dataset (with respect to the total number of taxa)
that we analyzed with SuperQ. The resulting network is depicted in Figure 5. It
took approximately 30 minutes to construct this network.

When we compare the supernetwork in Figure 5 with the output of Z-closure
presented in [7, p. 156] we again find that both networks agree on many of the
major splits. Note however that the Z-closure network in [7, p. 156] is unweighted
(every split has weight 1) whereas we are able to obtain estimated weights for

Fig. 3. The supernetwork produced by our method for the seven partial gene trees
from [17] showing 45 species of microgastrine wasps
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Fig. 4. The supernetwork produced by Z-closure [7] for the wasp dataset [17]. We used
the implementation of Z-closure available in the current version of SplitsTree [16]. The
settings we used were 100 runs, maximum dimension 2 and average relative weights for
the splits.

Fig. 5. The supernetwork constructed by our method for the five partial gene trees
from [18,19] showing 63 species of funghi

the splits as described in Section 2.2. Curiously, even though in this example
the rank of the reduced topological matrix was only 1531 (which is significantly
less than 1952, i.e., the total number of splits in Σ∗

T ), we found that the interval
within which the weight of each split can vary in different solutions to the non-
negative least squares problem (1) was very small for many of the splits. We will
explore this phenomenon in future work.
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Fig. 6. Seven partial gene trees showing 50 species of Brassicaceae

The third dataset consists of 7 maximum likelihood trees estimated from in-
dependent genome loci of flowering plants from the family Brassicaceae. The
gene trees, which are depicted in Figure 6, were reconstructed using nuclear and
chloroplast nucleotide sequences obtained from GenBank, and others determined
as part of a study on phylogenetic relationships among close relatives of Ara-
bidopsis (McBreen et al., unpublished). The total number of taxa is 50. Note
that in the trees shown in Figure 6 all pendent edges have the same weight. As
these weights do not influence the quartet-weight function μ∗ we only included
these edges to make the trees easier to read. The network constructed by our
method is shown in Figure 7. It took approximately 20 minutes to construct this
network.

This example illustrates well a fundamental problem that every supernetwork
construction method is confronted with. If certain taxa never appear together
in an input tree then it can be difficult to decide how to group the taxa in the
supernetwork. For example, the network in Figure 7 does not contain a split
that separates all species of the genus Pachycladon (abbreviated by P) from
the other taxa. The reason is that none of the input trees contains a Pachy-
cladon species as well as Rorippa amphibia or Barbarea vulgaris. Therefore, the
SuperQ algorithm cannot decide whether they all belong into one group or there
should be two groups, one containing all Pachycladon species and one containing
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Fig. 7. The supernetwork constructed by SuperQ for the seven partial gene trees in
Figure 6

Rorippa amphibia and Barbarea vulgaris. In the resulting supernetwork all of
those potential splits are assigned weight zero.

4 Conclusions

In this paper we have presented SuperQ, a new method to construct super-
networks from partial trees. The examples presented in Section 3 indicate that
our method works well in practice and, for these examples at least, generates
networks that are similar in structure to the output of the Z-closure and Q-
imputation methods.

Although further work needs to be done to compare the performance of Su-
perQ with the Z-closure and Q-imputation methods (and also supertree methods
in general), one of the main advantages of SuperQ is that it is guaranteed to
produce a planar network. Another useful property of SuperQ is that it does
not depend on the order in which the quartets derived from the input trees are
processed, except for ties in the score function used in the QNet algorithm to
construct the split system ΣT (such ties will occur only rarely in practice if the
quartet weights are real numbers). Moreover, as with Z-closure (but in contrast
to Q-imputation), the input to SuperQ is not restricted to partial trees but can
clearly be applied more generally to any collection of partial split-networks.

Our experience from the data sets in Section 3 suggests that the computational
time needed to process a data set with the current implementation of SuperQ is
similar to Z-closure and Q-imputation. The split system ΣT can be computed
in O(t · n4) time and space where n = |X | and t is the number of input trees.
The algorithm for estimating the weights of the splits has superpolynomial worst
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case run time but seems to work well in practice (as with QNet [9]). We expect
that there is potential for a speed-up of SuperQ by taking advantage of the fact
that the linear programs Πk differ only in the objective function but not in the
set of constraints.

In future work we will explore ways to pass more information on to the user
about the different weightings of the split system Σ∗

T that result from solutions
to the non-negative least squares problem (1). As mentioned above our current
estimate of the weights is very conservative. As a first step we plan to compute
also the maximum weight that a split receives in a solution of (1). Then for
every split we have an interval within which the weight of the split must lie. If
the length of the interval is zero (or very small), then the split has an (almost)
unique weight in every solution of (1). Other issues we plan to address are ways
to visualize the interdependence of the weights assigned to splits, and to tie the
weight assigned to the trivial splits more directly with the input trees.

In conclusion there are now various methods available for computing phyloge-
netic supernetworks. Using such methods it should be possible to gain a greater
understanding of the complexities hidden within collections of partial trees. As
the number of fully sequenced genomes continues to expand and, correspond-
ingly, the size of multiple gene tree analyses, these tools should become more
and more useful.
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9. Grünewald, S., Forslund, K., Dress, A., Moulton, V.: QNet: An agglomerative
method for the construction of phylogenetic networks from weighted quartets.
Molecular Biology and Evolution 24, 532–538 (2007)
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Abstract. The result of a multiple gene tree analysis is usually a num-
ber of different tree topologies that are each supported by a significant
proportion of the genes. We introduce the concept of a cluster network
that can be used to combine such trees into a single rooted network,
which can be drawn either as a cladogram or phylogram. In contrast
to split networks, which can grow exponentially in the size of the input,
cluster networks grow only quadratically. A cluster network is easily com-
puted using a modification of the tree-popping algorithm, which we call
network-popping. The approach has been implemented as part of the
Dendroscope tree-drawing program and its application is illustrated us-
ing data and results from three recent studies on large numbers of gene
trees.

1 Introduction

Increasingly, multiple gene analyses based on tens, hundreds or many thousands
of genes are being used to investigate the evolutionary relationship between
different species, e.g. [1,17,5]. These studies all confirm that gene trees differ,
usually not just by random small amounts, but systematically, requiring mech-
anisms such as incomplete lineage sorting, or, more interestingly, hybridization,
horizontal gene transfer or recombination, as an explanation.

The goal of a multiple gene analysis is usually to deduce a species tree from the
computed gene trees, for example, by computing a consensus tree, or reporting
a small number of possible trees. An alternative approach is to compute a phylo-
genetic network that represents a number of different gene trees simultaneously
and thus stakes out the space of possible species trees.

The computer program SplitsTree [11,12] has helped to popularize the use of
phylogenetic networks, in particular split networks [2]. A split network generalizes
the concept of an unrooted phylogenetic tree and uses bands of parallel edges to
represent incompatible “splits” (i.e., unrooted clusters) of the set of taxa under
consideration.

Given a collection of trees (all on the same set of taxa), one approach is to
select all splits that are contained in more than a fixed percentage of all trees and
to represent these by a split network [10]. In the more general situation in which
taxon sampling differs between trees, a distortion filter can be applied to obtain
the main variants of the gene trees, in an unrooted and unweighted way, see [16].

K.A. Crandall and J. Lagergren (Eds.): WABI 2008, LNBI 5251, pp. 296–305, 2008.
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Such constructions give rise to split networks that summarize the main variants
of the gene trees, in an unrooted and unweighted way, see Figure 1(a). In this
simple example, the two networks are topologically equivalent. However, note
that in general this will not be the case as the number of nodes and edges grows
only quadratically in a cluster network and exponentially in a split network (in
the worst case).

S_mikatae

S_cerevisiaeS_paradoxus

S_castellii

S_kluyveri

C_albicans

S_bayanus

S_kudriavzevii
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S_kudriavzevii

S_bayanus

S_castellii

S_kluyveri

C_albicans

(a) (b)

Fig. 1. Based on all splits contained in > 20% of 106 gene trees computed using maxi-
mum parsimony by Rokas [1], we show (a) the split network [10,12] and (b) a weighted
cluster network. In the latter network, the edge width indicates the number of trees
supporting a given edge.

Although split networks are increasingly being used to visualize the main
competing phylogenetic signals in data sets, they have a number of drawbacks: (i)
The bands of parallel lines used to facilitate incompatible splits can be confusing
as they usually do not directly correspond to possible lineages. (ii) The networks
are unrooted and thus cannot be drawn as cladograms or phylograms. (iii) In the
worst case, the number of nodes and edges of the network can grow exponentially
with the number of splits in the input.

To address these three problems, in this paper we introduce the concept of a
cluster network, a rooted visualization of a set of clusters, which can be drawn as
a cladogram or phylogram and has only a quadratic number of nodes and edges
in the worst case, see Figure 1(b). After discussing how to compute a cluster
network using a “network-popping” algorithm, we will address the problem of
assigning weights to all edges in the network so as to show how strongly alterna-
tive phylogenies in the network are supported. To this end, we will introduce the
concept of the lowest single ancestor of a node, which is related to the concept
of the “lowest common ancestor”.
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We have implemented all algorithms discussed in this paper and will make
them available in version 2.0 of our program Dendroscope [15] upon pub-
lication of this paper. (Referees can download a preliminary version from
www.dendroscope.org/internal.) Below, we will illustrate the use of these new
concepts on three examples: yeast data [1], plant chloroplast gene trees [17] and
primate trees [5].

In cases where the topology of different gene trees varies quite substantially,
for example, in prokaryotes due to horizontal gene transfer [4], see Section 4,
it may be useful to use the term species network instead of cluster network to
emphasize that the set of gene trees under consideration does not appear to
support any one species tree.

2 Cluster Networks

Let G = (V,E) be a connected, acyclic directed graph with node set V and
edge set E that has exactly one node ρ of indegree 0, called the root. Nodes of
outdegree 0 are called leaves, nodes of indegree ≤ 1 are called tree nodes, whereas
nodes of indegree ≥ 2 are called reticulate nodes. An edge e = (v, w) is called
a tree edge, if its “target node” w is a tree node, and otherwise, it is called a
reticulate edge.

Let X be a set of taxa. A cluster network N on X consists of such a graph
G, together with a labeling of the nodes λ : X → V with the property that all
leaves receive a label. Let N be a cluster network on X . Any tree edge e = (v, w)
defines a cluster C ⊆ X on X , namely the set of all labels associated with nodes
that can be reached from w. The set C(N) of all clusters obtainable in this way
will be called the set of clusters represented by N . Note that we do not associate
a cluster with any reticulate edge.

This definition is closely related to the concepts of a reticulate network [13],
hybridization network [19,3] or recombination network [9,14]. However, there is
a important difference in the interpretation of the networks. For example, in a
hybridization network, a tree edge may represent more than one cluster, as any
given reticulate node in such a network has precisely two incoming edges that
represent alternative phylogenies which can be turned on or off at will. However,
in a cluster network, all reticulate edges are always “on”. It is useful to use the
terms “softwired” and “hardwired” to emphasize this distinction.

In Figure 2, we list a collection of clusters that are incompatible and thus can
not be represented by a tree, and show the corresponding cluster network.

A set of compatible splits, or compatible clusters, can be represented by an
unrooted, or rooted, tree, respectively. Just as a collection of incompatible splits
can be represented by a split network, we propose to represent a collection of
incompatible clusters by a cluster network.

For this purpose, we will assume that all cluster networks considered have the
following reticulation separation property: Every reticulate node has outdegree
= 1. This property can easily be obtained by inserting a new edge before every
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{a}, {b}, {c}, {d}, {e},
{a,b}, {a,b,c},
{c,d}, {c,d,e}.

a

b

c

d

e

(a) (b)

Fig. 2. (a) A collection of clusters and (b) a cluster network representing the clus-
ters. “Tree” edges representing clusters are drawn in a rectangular fashion, whereas
facilitating “reticulate” edges are curved.

node v that has indegree ≥ 2 and outdegree �= 1. This new edge (v′, v) connects
a new node v′ to v and all inedges of v are redirected to v′.

Let C be a set of k clusters on a taxon set X . We will now describe how to
construct a cluster network that represents C (and only C), using O(k) nodes and
O(k2) edges. As the algorithm is a generalization of the “tree-popping” method
[18], we will refer to it as network-popping.

Algorithm 1 (Network-popping algorithm)
Input: Set of k clusters C on X
Output: Cluster network N representing C

begin
If X /∈ C then add X to C
Create one node v(C) per cluster C ∈ C and set C(v) = C
Set the root ρ = v(X)
for each C ∈ C, C �= X in order of decreasing cardinality do

Push ρ onto a stack S
while S is not empty do

Pop v off S
Set isBelow = false
for each child w of v do

if C ⊂ C(w) then
Set isBelow = true
if w not yet visited then push w onto S

if isBelow = false then
Create a new edge (w, v(C))

for each node v with indegree ≥ 2 and outdegree �= 1 do
Create a new node v′
Redirect all inedges of v to v′
Create a new edge (v′, v)

for each node v do
Set the label of v to λ(v) = C(v) \

⋃
w child of v C(w)

end

Fig. 3. The network-popping algorithm for constructing a cluster network

The network-popping algorithm proceeds in three steps, first constructing
the “Hasse diagram” (as defined in graph theory), then inserting additional tree
edges so as to ensure the reticulation separation property and then finally setting
up the node labeling, see Figure 3. By construction, each node v of the original
Hasse diagram corresponds to a cluster C and is the target of exactly one tree
edge e, and so this edge can be used to represent C. As each node is incident
to some tree edge and there are k tree edges, the number of nodes is at most
2k and the number of reticulate edges is at most

(
2k
2

)
. An upper bound for the

running time of the algorithm is given by O(nk3), where n is the number of taxa
and k is the number of clusters.
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Note that the network-popping algorithm produces a tree, if and only if the
set of input clusters is compatible.

Let T be a collection of rooted phylogenetic trees on X and let C be a subset
of all clusters represented by trees in T . If N is a cluster network representing C
that was computed using the network-popping algorithm, then any tree T ∈ T
is contained in N as a subtree, if all clusters of T are contained in C. Otherwise,
if N contains only a part of the clusters of T , then N contains a contraction of
T , by properties of the algorithm.

Cluster networks can be drawn either as cladograms, in which edge lengths
have no direct interpretation, or as phylograms, in which the tree edges are
drawn to scale to represent evolutionary distances, using modifications of the
standard algorithms used to draw trees [6], as we will describe in a forthcoming
paper, see Figure 1(b).

3 Summarizing Gene Trees

Let T be a collection of gene trees on a taxon set X . Usually, the cluster network
N of all clusters present in T will be too messy to be useful. One straight-forward
idea is to consider only those clusters that are contained in a fixed percentage
of the trees [10,16].

Additionally, to enhance the readability of the network N , one can use dif-
ferent line widths or a gray scale to visualize the support of each edge e in the
network, indicating the percentage of trees in T that contain e. If e is a tree
edge, then e represents some cluster C ⊂ X and it is clear how to compute its
support. However, if e is a reticulate edge, then it is not immediately obvious
how the support of e is to be defined. We now address this issue in the following
subsections.

3.1 The Lowest Single Ancestor

LetN be a cluster network. The lowest single ancestor (lsa) of a node v is defined
as the last node lsa(v) that lies on all paths from the root ρ of N to v, excluding
v. The lsa of any node v is uniquely defined.

The lsa of all reticulate nodes of N can be computed in a single postorder
traversal of the network: for each reticulate node v and every node w in the
network, we keep track of which paths from v toward the root go through w. If,
at any point, we encounter a node w such that the set of all paths through w
equals the set of all paths currently in existence for v, then we have found the
lca of v, namely w. 1

1 We can also define the lsa of a set of two or more nodes. For a tree, this coincides
with the lowest common ancestor (lca). Using this fact and the lsa-tree of N one
can show that the lookup of the lsa of any two nodes in a cluster network N can be
performed in constant time, after a linear amount of processing, just as in the case
of the lookup of lca in trees, which was described in [8], Chapter 8.
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We obtain the lsa-tree Tlsa(N) of a cluster networkN as follows: for each retic-
ulate node v in N , remove all reticulate edges leading to v and then add a new
edge from lsa(v) to v. This tree is well-defined. If the network was constructed
from a collection of trees T , then the lsa-tree Tlsa(N) can be considered a new
type of consensus tree that is different from all split-based consensus trees, such
as the strict, loose or majority consensus. Another application of the lsa-tree is
in drawing of cluster networks, as we will discuss in a forthcoming paper.

3.2 Estimating the Support of a Reticulate Edge

As stated above, we can define the support s(e) of a tree edge e in N as the
percentage of trees in the input set that contain the corresponding cluster. We
will estimate the support of a reticulate edge by averaging the support of tree
edges over appropriate sets of edges. In Figure 4, we show a reticulate node v
with two reticulate edges e and f . Let A be the set of all tree edges between e
and lsa(v), let B be the set of all tree edges between f and lsa(v), and let C be
the set of all tree edges below v. Let s̄(A) denote the average support of all tree
edges in A. In the case of a reticulation with two reticulation edges, we define
the support of the reticulate edge e as:

s(e) = s̄(C)
s̄(A \B)
s̄(A ∪B)

,

that is, as the average support of all tree edges below v, weighted by the ratio
between the average support of tree edges only between e and lsa(v) over the
average support of all tree edges between v and lsa(v). It is easy to adapt this
definition for the case where a reticulation has more than two reticulation edges.

Fig. 4. The support for the reticulate edges e and f at the reticulate node v is computed
by considering the average support of the tree edges in A, B and C. The network is
drawn left-to-right, with the root r at the left.

4 Implementation and Examples

We have implemented all algorithms described in this paper within the frame-
work of our program Dendroscope [15] and will make these features available in
version 2.0 of the program, upon publication of this paper. Additionally, these
algorithms will also be made available in a future release of SplitsTree4 [12].
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Fig. 5. Cluster networks computed from 59 gene trees compute from data reported in
[17]. In (a), all 27 taxa are present. In (b), two very divergent taxa, Adiantum and
Anthoceros, have been removed.

We will illustrate the application of these ideas using three examples. In [1],
Rokas et al. investigate the evolutionary history of seven Saccharomyces species
and a fungal outgroup Candida albicans, using alignments of 106 different gene
sequences, totaling 127,026 nucleotides. The paper shows a number of different
phylogenies obtained from the different genes, which are also compared with the
tree obtained from the concatenation of all sequences. In [10], Holland et al.
extract all splits contained in more than 20% of the trees and construct a split
network from these, obtaining a network as show in Figure 1(a). In Figure 1(b),
we show a cluster network constructed from the same data, in which different
edge widths are used to indicate the support of the different reticulate edges,
computed as described in the previous section. The cluster network clearly in-
dicates which of the two placements of both S. kudriavzevii and S. castellii are
favored by a majority of the trees.

In [17], Leebens-Mack et al. study the evolutionary history of plants using 61
chloroplast genes. We downloaded the gene sequence DNA alignments from the
authors website and constructed trees using the logdet distance transformation
[21] and the BioNJ tree construction algorithm [7], as implemented in Split-
sTree4 [12]. For two genes, the logdet transformation was not applicable, due to
singularities in the frequency matrix and these trees were discarded. In Figure 5,
we show the cluster network for all clusters occurring in more than 20% of the
computed trees. In (a), we show the network obtained from trees computed on
the full dataset, whereas in (b) the network was obtained from trees computed
on the subset of taxa obtained by removing the two taxa Adiantum and Antho-
ceros. Confirming the discussion in [17], in (a) we see that these two taxa are



Summarizing Multiple Gene Trees Using Cluster Networks 303

Human

Chimp

Gorilla

Orangutan

Rhesus

(a) 76%

Gorilla

Chimp

Human

Orangutan

Rhesus

(b) 11%
Human

Gorilla

Chimp

Orangutan

Rhesus

(c) 11%

Human

Chimp

Gorilla

Orangutan

Rhesus
(d)

Fig. 6. A set of 11,945 “phylogenetically informative alignments” lead to the three
main tree topologies shown in (a)–(c), with (a) occurring in ≈ 76%, and the other two
each in ≈ 11%, of the cases [5]. The cluster network shown in (d) summarizes these
three alternatives.
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Fig. 7. (a) Overview of a cluster network based on 18 genes for 279 prokaryotes. (b) A
detailed view of the archaea contained in the network.
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very divergent and that they confound the two outgroup taxa Marchantia and
Physcomitr. Also in line with the discussion in [17], in (b) we see that removal
of the two divergent leads to a less certain placement of Calycanthus.

The evolutionary relationship between human, chimpanzee and gorilla, to-
gether with orangutan and rhesus monkey can now be investigated using genome-
widedata [20]. In [5], strong support for three alternative phylogenieswas reported,
as shown in Figure 6 (a)-(c). Based on these three weighted trees, we obtain the
cluster network N shown in (d).

There is much debate whether the evolutionary history of prokaryotes is best
described by a tree, or whether a phylogenetic network is a more appropriate
representation [4]. For a recently submitted manuscript, we built 18 different gene
trees for 279 species of bacteria and archea with the aim of detecting possible
cases of horizontal gene transfer. Using all clusters that occur in 20% or more of
the trees, we obtain the cluster network depicted in Figure 7 which clearly shows
the alternative placements of taxa suggested by the different genes. Computation
of this network from the set of input trees took less than 1 second. Note that
the alternative placements visible here are probably not due to horizontal gene
transfer events but are probably caused by local rearrangements in the different
trees based on lineage sorting effects or systematic and stochastic error.
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works. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175,
pp. 150–161. Springer, Heidelberg (2006)

17. Leebens-Mack, J., Raubeson, L.A., Cui, L., Kuehl, J.V., Fourcade, M.H., Chum-
ley, T.W., Boore, J.L., Jansen, R.K., de Pamphilis, C.W.: Identifying the Basal
Angiosperm Node in Chloroplast Genome Phylogenies: Sampling One’s Way Out
of the Felsenstein Zone. Mol. Biol. Evol. 22(10), 1948–1963 (2005)

18. Meacham, C.A.: Theoretical and computational considerations of the compatibility
of qualitative taxonomic characters. In: Felsenstein, J. (ed.) Numerical Taxonomy.
NATO ASI Series, vol. G1, Springer, Berlin (1983)

19. Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate evolution in
species - theory and practice. In: Proceedings of the Eighth International Confer-
ence on Research in Computational Molecular Biology (RECOMB), pp. 337–346
(2004)

20. Patterson, N., Richter, D.J., Gnerre, S., Lander, E.S., Reich, D.: Genetic evidence
for complex speciation of humans and chimpanzees. Nature 441, 1103–1108 (2006)

21. Steel, M.A.: Recovering a tree from the leaf colorations it generates under a Markov
model. Appl. Math. Lett. 7(2), 19–24 (1994)

www.splitstree.org
www.dendroscope.org


Fast and Adaptive Variable Order Markov Chain

Construction

Marcel H. Schulz1,3, David Weese2, Tobias Rausch2,3, Andreas Döring2,
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Abstract. Variable order Markov chains (VOMCs) are a flexible class
of models that extend the well-known Markov chains. They have been
applied to a variety of problems in computational biology, e.g. protein
family classification. A linear time and space construction algorithm has
been published in 2000 by Apostolico and Bejerano. However, neither
a report of the actual running time nor an implementation of it have
been published since. In this paper we use the lazy suffix tree and the
enhanced suffix array to improve upon the algorithm of Apostolico and
Bejerano. We introduce a new software which is orders of magnitude
faster than current tools for building VOMCs, and is suitable for large
scale sequence analysis.

1 Introduction

Markov chains are often used in computational biology to learn representative
models for sequences, as they can capture short-term dependencies exhibited
in the data. The fixed order L of a Markov chain determines the length of the
preceding context, i.e. the number of dependent positions, which is taken into
account to predict the next symbol. A severe drawback of fixed order Markov
chains is that the number of free parameters grows exponentially with L, s.t.
training higher order Markov models becomes noisy due to overfitting. These
considerations have led to the proposal of a structurally richer class of models
called variable order Markov chains, which can vary their context length. There
are two prominent methods in use by the community. One is the tree structured
context algorithm of Rissanen [1], and the other is the probabilistic suffix tree
of Ron et al. [2].

VOMCs have been used for different applications like classification of tran-
scription factor binding sites, splice sites, and protein families [3–5]. Dalevi and
co-workers applied VOMCs to the detection of horizontal gene transfer in bacte-
rial genomes [6]. VOMCs have been used by Bejerano et al. for the segmentation
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of proteins into functional domains [7], and Slonim and others have shown how to
exploit their structure for feature selection [8]. VOMCs do not require a sequence
alignment, an advantage over many other sequence models. They dynamically
adapt to the data and have been shown to be competitive to HMMs for the task
of protein family classification [9]. For the task of DNA binding site classification
they outperform commonly used Position Weight Matrices [3, 4, 10].

There are theoretical results on linear time and space construction of VOMCs
[11]. However, currently no linear time implementation has been published and
the available tools [6, 12] are suboptimal in theory and slow in practice. For
example the pst software [12] implements the O(‖S‖2L) algorithm due to Ron et
al. [2], which is used in the studies [5, 9, 13]. We believe that three major reasons
account for the absence of a linear time implementation: (i) the linear time
algorithm proposed by Apostolico and Bejerano appears to be quite complex
[11]; (ii) implementations of VOMC construction algorithms have always been
explained separately for the methods of Ron et al. [2] and Rissanen [1], which led
to the misconception that the first “has the advantage of being computationally
more economical than the” second [13]; (iii) it is based on suffix trees which are
known to be space-consuming and slow for large sequences due to bad cache
locality behaviour.

A lot of research has focused on improving suffix tree construction algorithms
by reducing the space requirements [14–17]. An index called enhanced suffix
array can be an efficient replacement for a suffix tree [18]. In this work we will
employ some of these strategies and devise and implement improved versions of
the Apostolico-Bejerano (AB) algorithm.

In Section 2 we introduce necessary data structures and formulate a general
approach to VOMC learning. Both methods [1] and [2] are implemented with
the same construction algorithm in Section 3, where the AB algorithm and our
improvements are explained. The superiority compared to former algorithms is
demonstrated in Section 4.

2 Preliminaries

2.1 Definitions

We consider a collection S of strings over the finite ordered alphabet Σ. Without
loss of generality choose σi ∈ Σ, s.t. σ1 < . . . < σ|Σ|. ΣL is defined as the set of
all words of length L over Σ. ε is the empty string and Σ0 = {ε}. The length of
a string s ∈ S is denoted by |s| and ‖S‖ is defined as the concatenated length of
all strings s ∈ S. |S| is the number of strings in the collection, sR is the reverse
of s, and SR is the collection of the reverse sequences of S. u[i] denotes the i-th
character of u. We denote as ur the concatenated string of strings u and r. The
empirical probability P̃ (r) of a subsequence r ∈ S is defined as the ratio

P̃ (r) =
NS(r)

‖S‖ − (|r| − 1)|S| , (1)
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where NS(r) is the number of all, possibly overlapping, occurrences of the subse-
quence r in strings s ∈ S. The denominator is the number of all possible positions
of a word of length |r| in S. This defines a probability distribution over words of
length l, with

∑
r∈Σl P̃ (r) = 1. We define the conditional empirical probability

P̃ (σ|r) of observing the symbol σ right after the subsequence r ∈ S as

P̃ (σ|r) =
NS(rσ)
NS(r∗) , (2)

with NS(r∗) =
∑

σ∈Σ NS(rσ). This can be seen as the relative frequency of σ
preceded by r.

Fig. 1. A PST over the DNA alphabet {a,c,g,t}. The vector close to each node is the
probability distribution for the next symbol, e.g., the symbol t occurs with probability
0.46 after all substrings ending with gat. The prediction of the string gattaca assign a
probability to each character: P (g)P (a)P (t|a)P (t|gat)P (a|tt)P (c|a)P (a) = 0.17 · 0.33 ·
0.91 · 0.46 · 0.04 · 0.03 · 0.33.

2.2 Variable Order Markov Chains

We now introduce the fundamental data structure, needed for learning a VOMC
and for prediction of sequences with a VOMC. A convenient representation of
a VOMC is the probabilistic suffix tree (PST) [2], sometimes called Context
Tree [1]. A PST T is a rooted tree with edge labels from Σ, and no two child
edges have the same character. A node with the concatenated string u, spelled
from node to root, is denoted ←−u . A node ←−u is called maximal if it has less than
|Σ| children. Each maximal node ←−u in a PST has attached a probability vector
vu ∈ [0, 1]|Σ|, with vu

i = P (σi|u). Given r[1]r[2] . . . r[m], the next transition is
determined as follows: walk down in the PST by following the edges labeled
r[m]r[m−1] . . . as long as possible; use the transition probabilities associated to
the last node visited.

Example 1. Consider the PST in Fig. 1. The underlying VOMC will map each
context ending with character c to vε = (0.33, 0.09, 0.17, 0.41), the probability
vector of the root. If the context is tat, the transitions correspond to the longest
path node

←−
at and are given by vat = (0.32, 0.03, 0.03, 0.62).
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2.3 A General Approach to Construct VOMCs

We divide VOMC learning algorithms [3, 4, 9, 1, 2] into two conceptional phases,
Support-Pruning and Similarity-Pruning. In the Support-Pruning phase the PST
is restricted to representative nodes. In the Similarity-Pruning phase redundant
nodes of the PST are removed. Tuning the parameters of the Support-Pruning
and Similarity-Pruning phases allows the control of the trade-off between bias
and variance for the final VOMC. A strict pruning in each phase shrinks the
PST and results in an underfitted VOMC, whereas limited pruning results in a
PST that overfits the data. We want to solve the following problem:

Problem 1. Given a string collection S generated by a VOMC, the aim is to find
the underlying PST T using only S.

We will introduce two widely-used solutions to Problem 1 by Rissanen [1] and
Ron et al. [2] for learning VOMCs, represented by PSTs, according to our general
approach.

Solution 1. Context Tree (S, t, L,K)
Support-Pruning. T is defined to contain the following nodes:

T ←
{
←−r | r ∈

L⋃

i=0

Σi and NS(r) ≥ t

}

. (3)

We denote the first part of the condition in (3) as L-Pruning and the second
part as t-Pruning.
Similarity-Pruning. Prune recursively in bottom-up fashion all leaves ←−ur,
with |u| = 1 and r possibly empty if:

∑

σ∈Σ

(

P̃ (σ|ur) · ln P̃ (σ|ur)
P̃ (σ|r)

)

·NS(ur) < K . (4)

The original solution proposed by Rissanen [1] set t = 2, and it was shown later
to be a consistent estimator for any finite t by Bühlmann and Wyner [19].

Example 2. Consider the string set S = {gattc, attgata} and set t = 2, L = 3,
and K = 0.04. The Context Tree algorithm will build the PST depicted in Fig.
1. All probability vectors of nodes ←−r have been smoothed by adding 0.01 to all
NS(rσ), σ ∈ Σ, before the conditional probabilities are calculated with (2).

Solution 2. Growing PST (S, Pmin, L, α, γmin, k)
Support-Pruning. Let X be a string collection. Initially T is empty and
X = {ε}. While X �= ∅, repeat the following: (i) pick and remove any r ∈ X ; (ii)
add ←−r to T ; (iii) If |r| < L, extend X as follows:

X ← X ∪
{
σr | σ ∈ Σ and P̃ (σr) ≥ Pmin

}
. (5)
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Similarity-Pruning. Prune recursively in bottom-up fashion all leaves ←−ur,
with |u| = 1 and r possibly empty if there exists no symbol σ ∈ Σ such that

P̃ (σ|ur) ≥ (1 + α)γmin (6)

and
P̃ (σ|ur)
P̃ (σ|r)

≥ k or
P̃ (σ|ur)
P̃ (σ|r)

≤ 1
k
. (7)

2.4 Suffix Trees

We will use artificial string markers $j at the end of each string sj to distinguish
the suffixes of strings in a collection S = {s1, . . . , s|S|}.

A suffix tree for a collection S over Σ is a rooted tree with edge labels from
(Σ ∪ {$1, . . . , $|S|})∗, s.t. every concatenation of symbols from the root to a leaf
node yields a suffix of sj$j for a string sj ∈ S. Each internal node has at least
two children and no two child edges of a node start with the same character.
By this definition, each node can be mapped one-to-one to the concatenation
of symbols from the root to itself. If that concatenated string is r the node is
denoted −→r . Notice that ←−u is the node with the concatenated string u read from
node to root. If u = rR, −→r and ←−u denote the same node. An important concept
of suffix trees are suffix links [14]. They are used to reach node −→r from a node
−→σr, σ ∈ Σ. Figure 2.1 shows a suffix tree built for Example 2.

3 Algorithms for VOMC Construction

3.1 The AB Algorithm

The algorithm of Apostolico and Bejerano builds a PST in optimal O(‖S‖) time
and space. We will explain the AB algorithm according to our general approach
from Section 2.3. The Support-Pruning phase is implemented with a suffix tree
built on S in linear time and space. Based upon that tree, all contexts which
do not fulfill the conditions of the Support-Pruning phase are pruned, see Fig.
2.1 and (3),(5). A bottom-up traversal of the suffix tree yields the absolute
frequencies and thus the probability vectors for each internal node. However, as
the suffix tree is built over S and not SR, going down in the suffix tree means to
extend a subsequence to the right, whereas context extensions are subsequence
extensions to the left. In other words, the father-son relation of the PST is
unknown, an essential information for the Similarity-Pruning phase. Hence, so-
called reverse suffix links (rsufs) are introduced, which are the opposite of suffix
links, see Fig. 2.3. Via rsufs all existent nodes −→σr, σ ∈ Σ, can be reached from
each node −→r . Walking the reverse suffix link from −→r to −→σr is equivalent to
walking from father ←−r to son ←−σr in the PST.
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Fig. 2. Overview of our implementation of the AB algorithm [11] for PST construction.
It can be divided into two pruning phases: Support-Pruning and Similarity-Pruning.
The figure shows the detailed construction for the parameters given in Example 2. A
detailed description can be found in Example 3.

Reverse suffix links, just as suffix links, can be constructed for a suffix tree in
linear time [20]. Using rsufs and after adding missing nodes,1 it can be shown
that the Similarity-Pruning phase takes only O(‖S‖) time.

Example 3. Figure 2 shows how the AB algorithm constructs the PST for the
parameters given in Example 2. In Fig. 2.1 the complete suffix tree of S is con-
structed. In step 2, a bottom-up traversal determines for all nodes the absolute
frequencies and nodes −→r , with NS(r) < 2, are pruned. Reverse suffix links are
added in Fig. 2.3, the start of the Similarity-Pruning phase. The node

−→
att is

pruned, as (4) is satisfied, and the missing node −→g is added in step 4. Finally
all vector entries are smoothed, see Example 2. The same PST as in Fig. 1 is
obtained when only the dotted lines, the rsufs, are considered.

We call the resulting automaton enhanced PST, as it allows a traversal from node
−→r to nodes −→σr via rsufs and to nodes −→rσ via suffix tree edges, for all σ ∈ Σ.
The enhanced PST can be modified to predict a new sequence of length m in
O(m) time instead of O(mL) for a PST [11], which is another advantage of the
1 It can happen that new auxiliary nodes need to be added to the suffix tree. Branching

nodes in a PST are not necessarily branching in the suffix tree. However, the missing
nodes, each a target of a reverse suffix link, can be created in O(‖S‖) time [11].
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algorithm. We have implemented the AB algorithm using the eager write-only
top-down (WOTD)-algorithm for suffix tree construction, one of the fastest and
most space efficient suffix tree construction algorithms [15].

3.2 Adaptive Algorithms for VOMCs

VOMCs select the abundant contexts in the data, the carriers of information.
They account for a small subset of suffix tree nodes, the pruned suffix tree,
which is determined by a traversal of the suffix tree. In the following we suggest
two different approaches to attain the pruned suffix tree more efficiently than
constructing the complete suffix tree. NS(r) and the absolute frequencies can
be obtained in a top-down traversal. After attaining the pruned suffix tree, we
proceed with steps 3 and 4 of the AB algorithm; add reverse suffix links and prune
similar nodes. The second approach is depicted for Solution 1 in Algorithm 1.

An Adaptive VOMC Algorithm with Enhanced Suffix Arrays. The
suffix array stores the starting positions of all lexicographically ordered suffixes
of a string [16]. We use the deep shallow algorithm by Manzini and Ferragina for
suffix array construction [21]. An enhanced suffix array (ESA) is a suffix array
which has two additional arrays, the lcp-table and the child-table which are used
to simulate a top-down traversal on a suffix tree of S in linear time and space
[18]. The ESA is an efficient replacement for the suffix tree in the first step of
the Support-Pruning phase, see Fig. 2.1. It can be used to traverse a suffix tree
top-down using 9 · ‖S‖ bytes of memory [18], assuming that L is always smaller
than 255. The traversed nodes are added to a new graph, the pruned suffix tree.
This tree is used in the next steps, depicted in Fig. 2.2–2.4. After the traversal,
the ESA is discarded. We refer to this algorithm as AV-1.

An Adaptive VOMC Algorithm with Lazy Suffix Trees. An approach
more appealing than the previous one is to avoid building the complete ESA,
but build only the parts of the suffix tree to be traversed. That means to entirely
skip the first step of the Support-Pruning phase. The lazy WOTD-algorithm is
perfectly suited to restrict the buildup of the suffix tree as it expands nodes top-
down. A lazy suffix tree is a suffix tree whose nodes are created on demand, i.e.
when they are visited the first time. Giegerich et al. introduced a lazy suffix tree
data structure [22] that utilizes the WOTD-algorithm [15, 22] for the on-demand
node creation. In the beginning, T contains only the root node and is iteratively
extended by suffix tree nodes, to at most the entire suffix tree.

After creating a node −→r in T the values |r| and NS(r), relevant for the
Support-Pruning phase, are known. Thus the restriction for length L and NS(r)
can be included to constrain the top-down construction, see lines 1–9 of Algo-
rithm 1. This does not only save construction time, but also reduces the amount
of space needed. Steps 3 and 4 of the AB algorithm are realized in lines 10–13.
The adaptive algorithm with lazy suffix trees is referred to as AV-2.
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Algorithm 1. createEnhancedPST(S, t, L, K)
Input : string set S over Σ, min. support t, max. length L, pruning value K
Output : enhanced PST T for Solution 1
// Support-Pruning
Let X be a string collection and T be a suffix tree containing only the root node.1

X ← {ε}2

foreach x ∈ X do3

X ← X \ {x}4

if |x| < L then5

foreach σ ∈ Σ with NS(xσ) ≥ t do6

Let y ∈ Σ∗ be the longest string, s.t. NS(xσy) = NS(xσ) and |xσy| ≤ L7

Insert −−→xσy into T .8

X ← X ∪ {xσy}9

// Similarity-Pruning
Insert auxiliary nodes into T [11] and add probability vectors to all nodes.10

foreach −→x , −→σx ∈ T , σ ∈ Σ do11

Add a reverse suffix link from −→x to −→σx.12

In a bottom-up traversal using only the reverse suffix links of T remove all nodes13

satisfying (4).
return T14

4 Results

We compared the runtime of our algorithms within two experiments. In the first
we investigated the improvement of the AV-1 and AV-2 algorithm compared to
the AB algorithm. In the second, we compared our new tool with two existing
software tools. For the Growing PST solution we used the RST algorithm [12]
and for the Context Tree solution the Dal algorithm [6]. The algorithms were
applied to data from applications mentioned in the introduction: three protein
families from the classification experiment of Bejerano et al. [9], two bacterial
genomes as in [6] retrieved from GenBank [23], a set of human promoter se-
quences [24], and the complete human proteome from Uniprot [25], see Table 2.
Experiments were conducted under Linux on an Intel Xeon 3.2GHz with 3 GB
of RAM. Output of all programs was suppressed. For all tests of the Context
Tree algorithm we fixed K = 1.2, and for the Growing PST algorithm we fixed
α = 0, γmin = 0.01, k = 1.2.

First we compared the runtime of the different Support-Pruning phases of
our implemented algorithms AB, AV-1, and AV-2. The results are shown for
four data sets with varying L, and three values for Pmin or t in Fig. 3. The AB
algorithm performs worse than the two adaptive algorithms for all sequences.
The AV-2 algorithm outperforms the AB and AV-1 algorithms for restrictive
parameters, but for small values of t the AV-2 implementation of the Context
Tree algorithm becomes less efficient and is outperformed by the AV-1 algorithm.
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Fig. 3. Runtime results for different Support-Pruning phases of our implemented algo-
rithms AB, AV-1, and AV-2, averaged over three runs

For the values of t in the H.inf. plot in Fig. 3 the runtime of the AV-2 algorithm
depends on the L-Pruning up to context length 7, whereas for long contexts the t-
Pruning dominates the L-Pruning. On the proteome data set a similar behaviour
is already visible for smaller values of L, because of the larger alphabet size.

Second we compared the runtime for the complete VOMC construction of
our implementations with the Dal algorithm and the RST algorithm. Table 1
reveals the superiority of our approach. The Dal algorithm is up to 11600 times
slower than the AV algorithms and crashes for some instances due to insufficient
memory. See Table 1 for the memory consumption for one such instance. The
RST algorithm is up to 2700 times slower than our algorithms not including the
parameter settings, where the RST algorithm was terminated after 100 minutes.
However, our algorithms are efficient for all parameter settings and alphabets.



Fast and Adaptive Variable Order Markov Chain Construction 315

Table 1. Runtimes in seconds of our implementations for Context Tree and Growing
PST solutions on various data sets and parameter settings

Runtime Context Tree Algorithms

(L, t) (5,2) (9,5) (15,100)

Name Dal AB AV-1 AV-2 Dal AB AV-1 AV-2 Dal AB AV-1 AV-2

H.inf. 6.56 2.04 1.72 0.74 28.9 3.98 3.78 3.12 485 2.16 1.75 1.12

E.coli 15.6 5.58 4.60 2.54 50.6 8.46 7.85 6.89 † 5.91 5.00 3.75

Promoters 76.5 50.4 31.1 19.3 179 53.9 34.9 36.1 † 52.3 32.8 34.4

7tm 83.1 1.62 1.61 1.49 339 0.82 0.71 0.71 812 0.21 0.14 0.07

ig 111 3.82 3.33 3.35 489 2.41 1.93 1.89 1200 0.98 0.46 0.20

ABC 618 41.2 31.3 30.8 † 30.3 20.5 18.5 † 16.2 5.97 2.75

Proteome 1810 59.2 51.0 36.8 † 60.3 51.6 39.7 † 39.1 27.4 14.8

Runtime Growing PST Algorithms

(L, Pmin) (5, 10−6) (9, 10−5) (15, 0.001)

Name RST AB AV-1 AV-2 RST AB AV-1 AV-2 RST AB AV-1 AV-2

H.inf. 119 2.07 1.60 0.71 – 2.71 2.13 1.68 102 2.00 1.53 0.70

E.coli 305 5.42 4.29 2.41 – 6.08 5.03 4.10 252 5.46 4.19 2.26

Promoters 1240 48.7 29.3 18.0 – 49.4 29.7 29.1 1020 48.8 28.4 15.4

7tm 1710 4.40 4.39 4.34 2400 2.42 2.37 2.36 4.20 0.21 0.13 0.06

ig 3260 7.77 7.21 7.28 4900 2.51 1.91 1.81 11.3 0.93 0.39 0.12

ABC – 22.2 11.8 9.47 – 16.7 6.17 3.43 85.5 15.9 5.20 1.52

Proteome – 43.6 31.6 20.2 – 37.7 25.0 12.7 392 36.7 24.0 7.39

† Program terminated due to insufficient internal memory (> 3GB).

– Program run for more than 6000 s.

5 Discussion and Conclusions

We achieved an order of magnitude improvement for VOMC construction algo-
rithms compared to two previous algorithms. In addition, we further improved
the overall time and space consumption of [11] by replacing the suffix tree with
more efficient and problem-oriented index data structures. All algorithms are
implemented with SeqAn [26] in the Pisa tool, which is publicly available at
http://www.seqan.de/projects/pisa.html. To our knowledge it is the most effi-
cient tool for VOMC learning in the bioinformatics community.

In our experiments the lazy suffix tree approach [15] is faster than the ESA
approach [18] and consumes roughly half of the memory. Improving the con-
struction time of the suffix array, one of three tables of the ESA, is a topic of
current research and an expanding field, outside the scope of this paper.

Other possible improvements of the Support-Pruning phase like a q-gram
index or length limited suffix tree construction in linear time, e.g. [27], might
be considered, but from our experience the lazy suffix tree is the most robust
data structure for our general implementation, as it works for large alphabets
and deep contexts as well.
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Table 2. Data sets used in the experiments and memory usage of the Context Tree
algorithms

Memory Usage in MB (L = 15, t = 100)

Name Description ‖S‖ (mb) |Σ| Dal AB AV-1 AV-2

H.inf. Haemophilus influenzae 1.9 5 2010 59.9 65.4 31.6

E.coli Escherichia coli 4.6 5 † 129 159 76.2

Promoters Human promoters 22.5 5 † 633 550 373

7tm transmembrane family 0.2 24 1160 6.57 7.38 3.93

ig Immunoglobulin family 0.5 24 1540 16.4 18.7 11.8

ABC ABC transporter family 4.3 24 † 118 156 81.1

Proteome Human proteome 17.3 24 † 456 503 306

In the future we will investigate extensions to the approach presented here to
build more advanced types of VOMCs, which can learn also subset relations e.g.
the approach presented by Leonardi [13].
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Abstract. Heuristic sequence alignment and database search algorithms,
such as PatternHunter and BLAST, are based on the initial discovery of
so-called alignment seeds of well-conserved alignment patterns, which are
subsequently extended to full local alignments. In recent years, the the-
ory of classical seeds (matching contiguous q-grams) has been extended to
spaced seeds, which allow mismatches within a seed, and subsequently to
indel seeds, which allow gaps in the underlying alignment.

Different seeds within a given class of seeds are usually compared by
their sensitivity, that is, the probability to match an alignment generated
from a particular probabilistic alignment model.

We present a flexible, exact, unifying framework called probabilistic
arithmetic automaton for seed sensitivity computation that includes all
previous results on spaced and indel seeds. In addition, we can easily
incorporate sets of arbitrary seeds. Instead of only computing the proba-
bility of at least one hit (the standard definition of sensitivity), we can op-
tionally provide the entire distribution of overlapping or non-overlapping
seed hits, which yields a different characterization of a seed. A symbolic
representation allows fast computation for any set of parameters.

Keywords: Homology search, Seed sensitivity, Spaced seed, Indel seed,
Multiple seeds, Probabilistic arithmetic automaton.

1 Introduction

Most heuristic homology search algorithms [1, 2, 3, 4] and some repeat detection
algorithms [5] are based on a filtration technique. In the filtration step, one se-
lects candidate sequences that share a common pattern of matching characters
(the seed) with the query. These candidates are then further investigated by ex-
act local alignment methods, such as the Smith-Waterman [6] algorithm. Initially,
only contiguous perfect matches (e.g., DNA 11-mers in the initial BLAST imple-
mentation) were used as seeds. The PatternHunter (PH) tool by Ma et al. [7] was
the first system to systematically advocate and investigate spaced seeds : PH looks
for 18-mers with at least 11 matching positions distributed as 111∗1∗∗1∗1∗∗11∗111,
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where 1 denotes a necessary match and ∗ denotes a don’t care position (match or
mismatch). Over time, various seed models have been proposed in the literature,
including consecutive seeds [1, 2], spaced seeds [7, 8, 9, 10], subset seeds [11], vector
seeds [12], and indel seeds [13].

Given a probabilistic model for alignments (a so-called homology model), dif-
ferent seeds in a class (e.g., all seeds with 11 match positions and length 18) can
be compared according to their sensitivity, i.e., to match an alignment of given
length. A good seed exhibits high sensitivity for alignment models that model
evolutionarily related biosequences, and low sensitivity values for models that
represent unrelated sequences. The latter property ensures that the seed does not
detect too many random hits. Random hits decrease the efficiency of the filtration
phase, since they are checked in vain for a significant alignment. An interesting
finding was that the PatternHunter approach led to an increase in both sensi-
tivity and filtration efficiency, compared to seeds of contiguous matches. Based
on the observations in [7], the advantages of spaced seeds over consecutive seeds
have been subsequently evaluated by many authors [8, 14, 15].

An extension to single seed models is the design of a multiple seed. This
is a set of spaced seeds to be used simultaneously, such that a similarity is
detected when it is found by (at least) one of the seeds. The idea to use a family
of spaced seeds for BLAST-type DNA local alignment has been suggested by
Ma et al. [7] and was implemented in PatternHunter II [16]. It has also been
applied to local protein alignment in [17]. Since finding optimal multiple seeds
(seed sets) is challenging, most authors concentrate on the design of efficient
sets of seeds, leading to higher sensitivity than optimal single seeds [16, 18, 19].
Kucherov et al. [18] characterize a set of seeds only by its selectivity. Recent
approaches [20, 21] approximate the sensitivity of multiple spaced seeds by means
of correlation functions. Moreover, Kong [20] discussed that sensitivity should
rather be measured via an averaging criterion.

When searching optimal seeds, one faces the following problems to evaluate
candidate seeds (the second more general one has not yet been extensively con-
sidered in the literature).

Problem 1 (Sensitivity computation). Given a homology model (Sect. 2.2), a
target length t of alignments, and a set of seeds (see Sect. 2.3 for a formal
description of different seed models), what is the probability that an alignment
of length t is matched by the seed (at least once)?

Problem 2 (Hit distribution). Given a homology model, a target length t of align-
ments, a set of seeds, and a maximal match number K, what is the probability
that an alignment of length t is matched by the seed exactly (at least) k times,
for k = 0, . . . ,K, when counting (a) overlapping matches, (b) non-overlapping
matches only?

Related Work and Our Contributions. We present an exact method, called
Probabilistic Arithmetic Automaton (PAA), to compute the sensitivity as well as
the entire distribution of the number of overlapping or non-overlapping hits for a
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given seed or set of seeds. The model is very flexible as it comprises the majority
of recent models. We generalize the Markov chain approach of Choi and Zhang
[14], following the idea to characterize a seed by an averaging criterion rather
than its sensitivity only. The obtained recurrences also allow a symbolic calcula-
tion as performed by Mak and Benson [22]. Moreover, the PAA can be designed
for indel seeds Mak et al. [13]. Similar to [11], our model provides a unifying
framework. However, we characterize multiple seeds by their sensitivity, whereas
Kucherov et al. [11] design seed families with perfect sensitivity minimizing the
number of false positives.

Outline. The rest of the paper is organized as follows: in Sect. 2 we first de-
scribe different homology and seed models before establishing the Probabilistic
Arithmetic Automaton in Sect. 3. We derive recurrence relations to compute hit
distributions and in particular the sensitivity of a given seed. Sect. 4 compares
our results to recent approaches. We divide our findings regarding Problem 1 in
three categories, namely for i) a single spaced seed, ii) a single indel seed and
iii) a set of spaced seeds. Considerations about Problem 2 complete the paper.

2 Background

2.1 Notation

Let Σ denote an alphabet and let the set Σ∗ include all finite words over Σ. A
string s = s[0]s[1] . . . s[l−1] ∈ Σl has length |s| = l, s[i] denotes the character at
position i (where indexing starts with 0) and s[i, j] refers to the substring of s
ranging from position i to j. As usual, ε is the empty string. The concatenation
of r and s is written as rs. Moreover, for two words r, s ∈ Σ∗, r � s indicates that
r is a prefix of s, while r � s says that r is a suffix of s. Finally, L(X) denotes
the probability distribution (Law) of a random variable X with corresponding
generic probability measure P.

2.2 Homology Model

To be able to compute seed sensitivity, we need to describe random alignments
with known degree of similarity (e.g., a certain per cent identity value). In the
context of seed sensitivity computations, it is customary not to model random
sequences and derive alignment properties from those, but to directly model
alignments representative strings A over an alphabet Σ indicating the status
of the alignment columns. In the simplest and most frequently studied case
[7, 8, 9, 10, 14, 19] only substitution mutations are considered; that is Σ = {0, 1},
referring to matches (1) and mismatches (0). Indel seeds use the alignment alpha-
bet Σ = {0, 1, 2, 3}, where additionally 2 denotes an insertion in the database
sequence, and 3 indicates an insertion in the query sequence. There are vari-
ous other alignment alphabets, e.g. the ternary alphabet representing match /
transition / transversion in DNA [23], or even larger alphabets to distinguish
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different pairs of amino acids in the case of proteins [17]. The sequence states of
alignment columns is modeled as a Markov chain (Σ,P, p0) with homology para-
meters P , a transition matrix on the alphabet Σ, and p0, an initial distribution
on Σ.

If we consider Σ = {0, 1} and an i.i.d. homology model, where the transition

probability Pij does not depend on i, then P takes the form
(

1 − p p
1 − p p

)
for a

match probability p ∈ [0, 1], which is the only homology parameter in this case
and quantifies the average per cent identity of such alignments. For indel seeds,
a first-order Markov chain is appropriate, since a substitution is more plausible
than two consecutive indels (one in each sequence). Hence, the homology model
should prohibit the pairs ‘23’ and ‘32’ in a representative string. With the in-
tention to compare our results later on, we work with the transition matrix P
proposed in [13]:

⎛

⎜
⎜
⎝

0 1 2 3
0 p0 p1 pg pg

1 p0 p1 pg pg

2 p∗0 p∗1 pg 0
3 p∗0 p∗1 0 pg

⎞

⎟
⎟
⎠, (1)

where p0 is the probability of a mismatch, p1 is the probability of a match, and pg

refers to the probability of a gap in the alignment. In order to ensure a stochastic
transition matrix, p∗i = pi + pgpi/(p0 + p1) for i = 0, 1 redistributes pg to match
and mismatch characters. The initial distribution is given by p0 = (p0, p1, pg, pg).
Other transition probabilities are possible, e.g. if alignments with affine gap costs
should be modeled.

2.3 Seed Models

A seed π = π[0]π[1] . . . π[L− 1] is a string over an alphabet of “care” and “don’t
care” characters. It represents alignment regions that indicate matches at the
“care” positions. A seed is classified (L, ω) by its length L = |π| and its weight
ω, which refers to the number of “care” positions.

A spaced seed is a string over the alphabet Ξ = {1, ∗}. The “care” positions
are indicated by ‘1’, while ‘∗’ An indel seed according to Mak et al. [13] is a
string over the alphabet Ξ = {1, ∗, ?}, where ‘1’ and ‘∗’ are as above and ‘?’
stands for zero or one character from the alignment alphabet Σ = {0, 1, 2, 3}.
Consecutive ‘?’ symbols may represent any character pair except ‘23’ or ‘32’. By
means of this interpretation, the model explicitly allows for indels of variable
size. For example, 1??1 may detect indels of size 0, 1, or 2. It hence tolerates 2,
1, or 0 match/mismatch positions. To understand how indel seeds are used in
the filtering step of homology search, we refer the reader to the original article.

In order to obtain the set of patterns defined by π, let Ψ = {[1], [01], [ε0123]}
contain the character sets induced by Ξ, where we write [xy] as shorthand for
{x, y}. The generalized string that refers to π is G(π) = g(π[0]) . . . g(π[L − 1]),
where g : Ξ → Ψ is a mapping such that ‘1’�→ [1], ‘∗’�→ [01], and ‘?’�→ [ε0123].
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Definition 1 (Pattern set). Let π = π[0]π[1] . . . π[L− 1] be a seed of length L
over the alphabet Ξ. The pattern set

PS(π) =
{
s = s[0] . . . s[L− 1] | s[i] ∈ g(π[i])

}

contains all words satisfying the seed, this is all strings that match G(π).

Example 1. For the spaced seed π = 1 ∗ 1 ∗ 1 of length 5 and weight 3, G(π) =
[1][01][1][01][1] and PS(π) = {10101, 10111, 11101, 11111}. The patterns of the
indel seed π = 1 ∗ 1?1 with G(π) = [1][01][1][ε0123][1] are given by PS(π) =
{1011, 1111, 10101, 10111, 10121, 10131, 11101, 11111, 11121, 11131}.

Definition 2 (Hit position). A seed π hits the representative string A ending
at position n iff

∃M ∈ PS(π) s.t. A[n− |M | + 1, n] = M .

Example 2. For the representative string 1011011110 for instance, the seed π =
1 ∗ 11 ∗ 1 hits at positions 6 and 9, the indel seed π = 11 ∗ 1?1 hits at positions
7 and 8, respectively.

The idea to use a finite, non-empty set Π = {π1, . . . , πm} of spaced seeds, also
called multiple spaced seed , turned out to further improve the quality of filtering
[8, 9, 16, 19]. The patterns are collected in PS(Π) = ∪m

i=1PS(πi). A multiple
seed hits A, if (at least) one of its components does (in contrast to Pevzner and
Waterman [24] where all seeds are required to match).

3 Probabilistic Arithmetic Automata

We show that the framework of Probabilistic Arithmetic Automata (PAA), re-
cently introduced by Marschall and Rahmann [25], provides a unified approach
to seed sensitivity computation. While including previous related approaches
[8, 11, 14], the PAA framework can handle both ungapped and gapped align-
ments. Moreover, it allows the investigation of overlapping and non-overlapping
hits of a single or a multiple seed. It yields recurrence relations to compute the
entire hit distribution and in particular seed sensitivity. From these recurrences
we derive a polynomial which allows fast computation for any parameter set.

A PAA consists of three components, namely i) a Markov chain, ii) emissions
associated with the states of this chain, and iii) a series of arithmetic operations
performed on the emissions. In the context of seed sensitivity the Markov chain
generates a random sequence alignment, emissions correspond to hit counts, and
the accumulation of such counts yields the distribution of seed hits. The following
formal definition is adopted from Marschall and Rahmann [25]:

Definition 3 (Probabilistic Arithmetic Automaton). A Probabilistic
Arithmetic Automaton is a tuple

(
Q, T, q0, E, μ = (μq)q∈Q, N, n0, θ = (θq)q∈Q

)
,

where
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– Q is a finite set of states,
– T =

(
Tuv

)
u,v∈Q

is a stochastic state transition matrix,
– q0 ∈ Q is called start state,
– E is a finite set called emission set,
– each μq : E → [0, 1] is a weight distribution associated with state q,
– N is a finite set called value set,
– n0 ∈ N is called start value,
– each θq : N × E → N is an operation associated with state q.

The tuple (Q, T, δq0) 1 defines a Markov chain on state spaceQ starting in q0 with
transitions according to T . Let

(
Yi

)
i∈N0

denote its associated state process. Ac-
cordingly,

(
Zi

)
i∈N0

represents the sequence of emissions and
(
Vi

)
i∈N0

denotes the
sequence of values Vl = θYl

(Vl−1, Zl), with V0 = n0, resulting from the performed
operations. In order to compute seed sensitivity, the PAA should count the num-
ber of seed hits to a randomly generated alignment. Therefore, we add the emit-
ted counts, so the operation is θq = + in each state. Thus, Vl = Vl−1 + Zl with
V0 = 0, reducing the free parameters of the PAA to

(
Q, T, q0, E, μ = (μq)q∈Q

)
.

3.1 PAA Construction

Our approach is related to [14]. Given the homology model (Σ,P, p0), we aim to
construct a Markov chain (Q, T, δq0) that generates a proper random sequence
alignment. Similar to the structure of an Aho-Corasick tree used in (approxi-
mate) string matching, the states of the underlying Markov chain have to incor-
porate all prefixes of the patterns of the considered seed π or multiple seed Π ,
respectively. Supplementary states are represented by the characters from the
alignment alphabet, and an additional start state ensures the initial character
distribution. Thus, for a given seed π of length L, the state space is

Q(π) = {start}∪ {σ ∈ Σ}∪ {x ∈ Σ∗ | 1 ≤ |x| ≤ L, ∃M ∈ PS(π) : x � M} . (2)

We mark a finite set F of final states in order to distinguish states that contribute
to the number of seed hits. In our case, these states are those hit by π, that is
F = {q ∈ Q | ∃M ∈ PS(π) : M � q}.

There is a non-zero outgoing transition from state u to state v if v is the max-
imal suffix of uσ, that is if there exists a σ ∈ Σ s.t. v = argmaxx∈{y∈Q | y�uσ} |x|.
The corresponding transition probability is Pu[|u|−1]σ = P(σ |u[|u| − 1]), where
the conditional probabilities are given by the homology model. Thus, in the i.i.d.
case it is just the character frequency pσ. The stochastic state transition matrix
of the PAA with u, v ∈ Q is given by

Tuv =

⎧
⎪⎨

⎪⎩

p0
σ if u = start, v = σ ∈ Σ,

Pu[|u|−1]v[|v|−1] if u �= start, ∃σ ∈ Σ : v = argmax{x∈Q |x�uσ} |x|,
0 otherwise.

(3)
1 The initial state distribution given by δq0 is the Dirac distribution assigning proba-

bility 1 to {q0}.
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(a) PAA counting overlapping hits of
π = 1 ∗ 1.

(b) PAA counting non-overlapping hits
of π = 1 ∗ 1.

Fig. 1. Markov chain underlying the PAA for π = 1 ∗ 1. 1(a) shows the transitions in
order to count all occurrences of π in a random alignment over Σ = {0, 1} (either i.i.d.
with match probability p or Markov with P�1 = p and P�0 = q). 1(b) is designed to
count non-overlapping hits.

If we are interested in counting non-overlapping hits, the transitions outgoing a
final state become

Tuv =

{
P1σ if u ∈ F , v = σ ∈ Σ,

0 if u ∈ F , v /∈ Σ,

since the last character read was a 1 (by definition). Therewith, the Markov chain
becomes reducible, and we can remove states from Q, that are not reachable from
start.

The so constructed Markov chain (Q, T , δstart) generates a random sequence
alignment whose similarity level is specified by the homology parameters. It is
adapted to a given seed through the choice of states. In order to count the
number of seed hits, we still need to assign the family μ = (μq)q∈Q of weight
output distributions. Let C(q) denote the number of hit counts in state q ∈ Q.
Then,

C(q) = |{M ∈ PS(π) : M � q}| . (4)

In the case of non-overlapping hits, |{M ∈ PS(π) : M � q}| = 1 for all q ∈ Q,
because of the reduced state space. Consequently, we deal with the emission set
E = {0, 1, . . . , cmax}, cmax = maxq∈Q C(q), and |E|-dimensional Dirac measures
μq assigning probability 1 to C(q).

Conclusion. To sum up, the PAA
(
Q, T, q0 = start, E = {0, 1, . . . , cmax}, μ =

(μq)q∈Q

)
with Q and T given in (2), (3), and μq = δC(q) with C(q) given by

(4), generates a random sequence alignment according to the specified homology
model in order to count the number of hits of a given seed π or Π , respectively.
The inherent Markov Additive Chain (Vl)l∈N0 with

Vl = Vl−1 + C(Yl), V0 ≡ 0,

yields the number Vt of accumulated hits in a random alignment of length t.



Alignment Seed Sensitivity with Probabilistic Arithmetic Automata 325

Remark 1. We use an O(|Σ| |Q| log |Q|) algorithm by Hopcroft [26] to minimize
the size of the state space. Here, the initial partition is induced by grouping
states with the same emitted value C(q), the same ingoing and the same outgoing
transition probability.

3.2 Hit Distribution and Seed Sensitivity

In order to compute the sensitivity of a given seed π or Π (Problem 1) and its
entire hit distribution (Problem 2) for a target alignment length t, we seek the
distribution L(Vt) of accumulated seed hits. This is obtained by marginalization
from the joint state-value distribution L(Yt, Vt) via P

(
Vt = k

)
=
∑

q∈Q P
(
Yt =

q, Vt = k
)
. For the sake of readability, we define hl

q(k) := P(Yl = q, Vl = k) and
thus, P(Vl = k) =: hl(k) =

∑
q∈Q hl

q(k). Now, we can reformulate the mentioned
problems. Seed sensitivity is commonly defined as

S(π, t) = P(Vt ≥ 1) = 1 − P(Vt = 0) = 1 − ht(0) . (5)

It is related to the hit distribution

P
(
{A | |A| = t, Vt = k}

)
= P(Vt = k) = ht(k) for k ≥ 0 . (6)

The PAA approach proposed in 3.1 yields the following system of recurrence
relations:

hl
q(k) =

{∑
q′∈Q hl−1

q′ (k)Tq′q if q /∈ F
∑

q′∈Q hl−1
q′ (k − C(q))Tq′q if q ∈ F

for q ∈ Q, l ≥ 1, (7)

with initial condition h0
start(0) = 1.

In order to efficiently implement the computation of seed sensitivity, we make
use of the vectorH l(0) =

(
hl

q(0)
)
q∈Q

and the update formulaH l(0) = H l−1(0)T ′.
By T ′, we denote the transition matrix projected to the columns representing q
withC(q) = 0. This means, all entries within a column corresponding to a state hit
by π are set to 0 in order to ensure hl

q(0) = 0 for q withC(q) > 0. The computation
of S(π, t) requires O(|Q|2) space and O(t |Q|2) time.

Parameter Free Calculation. Another advantage of our approach is the pos-
sibility of a parameter-free calculation as presented in Mak and Benson [22].
Without setting the homology parameters in advance, a polynomial (in these
parameters) can be computed from (7) by means of a computer algebra system
like Mathematica. Hence, one can quickly assess the sensitivity of a seed under
different parameter values.

4 Results

We have computed the sensitivity of a given seed or set of seeds by means of the
PAA approach. The analysis includes different seed and homology models.
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4.1 Spaced Seeds

We considered amongst others the PH seed class (18, 11) and the class (11, 7)
with a target alignment length of t = 64 as has been done in Choi and Zhang
[14]. The computed sensitivities (data not shown) agree with those determined
in the original article, except for class (11, 7) for low similarity levels. Instead
of sensitivity 0.05398 for p = 0.1 we compute 5.39821 × 10−6 and instead of
sensitivity 0.1140 for p = 0.3 our result is 0.01140. However, our results are
consistent with the polynomial obtained from the recurrences. They further agree
with the following plausibility argument: Let hi be the probability of the event
that the seed from (11, 7) hits the random alignment at position i. If we assume
independence of positions, hi = p7(1−p)4+4p8(1−p)3+

(
4
2

)
p9(1−p)2+

(
4
3

)
p10(1−

p)+p11 for all 11 ≤ i ≤ 64. For p = 0.1 this rough calculation yields a sensitivity
of 5.40021× 10−6.

4.2 Indel Seeds

To show that our approach also works for indel seeds, we compare our results
to sensitivities provided by Mak et al. [13]. Therefore, we investigate different
seeds under a Markov homology model with Σ = {0, 1, 2, 3} and transitions
according to 1. Note that in the original article the authors work with normalized
positions . This means, only positions in the representative string that refer to
a character in the query are counted. Thus, any 2 in A does not contribute to
the target alignment length t. We use the expected number t̄ of characters to
read up to the t’th normalized position and compute S(π, t̄) as well as S(π, t)
accordant to (5). The results in Table 1 show that sensitivity is overestimated
when using normalized positions, since some alignments are ignored, although
sensitivity is defined as fraction of sequence alignments that are matched by a
seed. Compare spaced and indel seeds of equivalent random hit rates, Mak et al.
[13] observe that with increasing indel to mismatch ratio, indel seeds outperform
spaced seeds. Our method yields the same results (compare Table 1), even if the
“winning seed” changes with target length.

Table 1. Sensitivity of pairs of spaced and indel seeds with equivalent random hit
rates for different homology parameters (t,p1,p0,pg). Winning seeds are shown in bold.

seed homology parameters sensitivity by [13] S(π, t̄) S(π, t)

1111 ∗ 111111 (64, 0.7, 0.2, 0.05) 0.488697 0.494082 0.470369
1111 ∗ 111?1111 (64, 0.7, 0.2, 0.05) 0.487703 0.492503 0.468351

1111 ∗ 111111 (100, 0.7, 0.2, 0.05) 0.669123 0.668821 0.649304
1111 ∗ 111?1111 (100, 0.7, 0.2, 0.05) 0.670198 0.669884 0.650131

111 ∗ 11 ∗ 1111 (64, 0.8, 0.15, 0.025) 0.943899 0.943609 0.937750
111 ∗ 11?11 ∗ 111 (64, 0.8, 0.15, 0.025) 0.943214 0.942985 0.936985

111 ∗ 11 ∗ 1111 (100, 0.8, 0.15, 0.025) 0.991157 0.990945 0.989497
111 ∗ 11?11 ∗ 111 (100, 0.8, 0.15, 0.025) 0.991239 0.991044 0.989594
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4.3 Multiple Seeds

It is already NP-hard [16] to find a single optimal seed by testing all seeds of
a given class and selecting the best. Additionally, for a multiple seed there are
exponentially many sets of seeds of a given weight. Hence, there is no exact algo-
rithm known that computes optimal multiple seeds. However, “good” multiple
seeds are computed by heuristic algorithms presented in [20] and [21]. These
approaches use different quality measures correlated with sensitivity, while we
compute exact sensitivity values even for non-i.i.d. homology models. Our results
agree with the approximations.

The PAA framework can also be applied to design efficient sets of seeds. Sim-
ilar to [19] we can successively find seeds that locally maximize the conditional
probability to hit a random alignment, given that the seeds in the set do not
match. This can be achieved by introducing absorbing states.

4.4 Alternative Criteria

In addition to recent work, our approach yields the entire distribution of seed
hits. Therefore, we can rank seeds e.g. according to their probability to produce
few overlapping hits or subject to the probability of at least two non-overlapping
hits. The latter corresponds to the FASTA approach. There, candidates are
required to contain at least two non-overlapping seed hits, which afterwards can
probably be combined to a similarity.

We have calculated the distributions (6) of overlapping and non-overlapping
hits for seed classes (11, 7) and (18, 11) (data not shown). Figure 2 shows the
parameter ranges for best performing seeds from the PH seed class according
to i) sensitivity and ii) the probability of at least two non-overlapping hits at
target alignment length 64.

For some parameters, the optimal seed has only a slightly higher sensitivity
than its competitors. In such cases, another criterion might be of interest. For
instance, for p = 0.4, where the four top-ranking seeds have almost the same

(a) Parameter ranges according to maximal sensitivity.

(b) Parameter ranges according to maximal probability of at least two non-
overlapping hits.

Fig. 2. Parameter ranges for best performing seeds from PH seed class (18, 11) at
target length 64. 2(a) shows seeds with highest sensitivity. 2(b) displays winning seeds
regarding the probability of at least two non-overlapping hits. A (PH):111 ∗ 1 ∗ ∗1 ∗ 1 ∗
∗11∗111, B:111∗∗1∗11∗∗1∗1∗111, C:11∗∗111∗1∗∗1∗111∗1, D:111∗1∗∗11∗1∗1∗∗111.
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sensitivity, we observe the PH seed A to maximize the non-overlapping hits
criterion clearly.

5 Conclusions

We have presented a Probabilistic Arithmetic Automaton to compute seed sen-
sitivity. It also provides the entire distribution of the number of overlapping or
non-overlapping seed hits. The flexibility of the PAA framework allows various
homology and seed models. In especially, we can handle sequence alignments
with or without gaps and build the automaton for an appropriate seed. For
that reason we have presented general definitions of the pattern set and the hit
position. Further, symbolic representation of (7) yields a polynomial in the ho-
mology parameters, which gives the solution to Problem 1 or Problem 2 for any
set of parameters. This enables us to differentiate between seeds that have very
similar sensitivities. It remains to prove to what extent alternative criteria are
reasonable. One idea is to investigate the hit distribution under two background
models: one alignment model representing unrelated sequences, one model de-
scribing homologous sequences. Then, we would call a seed optimal that has a
given high sensitivity (e.g. 95%) and maximizes selectivity.

Further, we show that one and the same approach is suitable for single and
multiple seeds. In particular, we can compute the sensitivity of a multiple seed
under non-i.i.d. homology models (in contrast to the DP algorithm by [16]).
Clearly, despite minimization, the size of the automaton is exponential in the
number of wildcards. Thus, the method should rather serve as verification for
heuristic algorithms.
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ments on the manuscript. I. Herms is supported by the NRW Graduate School
in Bioinformatics and Genome Research.
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Abstract. Although insertions and deletions (indels) are a common type of evo-
lutionary sequence variation, their origins and their functional consequences have
not been comprehensively understood. There is evidence that, on one hand, clas-
sical alignment procedures only roughly reflect the evolutionary processes and,
on the other hand, that they cause structural changes in the proteins’ surfaces.

We first demonstrate how to identify alignment gaps that have been intro-
duced by evolution to a statistical significant degree, by means of a novel, sound
statistical framework, based on pair hidden Markov models (HMMs). Second, we
examine paralogous protein pairs in E. coli, obtained by computation of classical
global alignments. Distinguishing between indel and non-indel pairs, according
to our novel statistics, revealed that, despite having the same sequence identity,
indel pairs are significantly less functionally similar than non-indel pairs, as mea-
sured by recently suggested GO based functional distances. This suggests that
indels cause more severe functional changes than other types of sequence vari-
ation and that indel statistics should be taken into additional account to assess
functional similarity between paralogous protein pairs.

Keywords: Alignment statistics, Deletions, Insertions, GO, Pair Hidden Markov
Models.

1 Introduction

Assessment of functional similarity of two proteins based on their amino acid com-
position is routinely done by alignment procedures. The reasoning behind this is that
homology can be reliably inferred from alignment scores, if significantly high. Homol-
ogy, in turn, is correlated to functional similarity [12]. However, it is well known that
in the twilight zone, i.e. protein alignments between roughly 20% to 40% sequence
identity, structural hence functional similarity cannot be reliably inferred [30]. Further
criteria are needed to distinguish functionally similar proteins from functionally differ-
ent proteins.

A couple of findings point out that indels, not substitutions, are the predominant evo-
lutionary factor when it comes to functional changes. For example, indels happen to oc-
cur predominantly in loop regions [11] which strongly indicates that their occurrence is
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related to structural changes on the proteins’ surfaces, hence functional changes. More-
over, recent studies show that indels can be of particular interest with regard to disease.
Indels are substantially involved in disease-causing mutational hot spots in the human
genome [17]. Moreover, promising approaches to the design of novel antibacterial drugs
based on the identification of indels have been recently described [6,5,21].

A more formal investigation of the relationship between indels and the functional
changes they imply may employ the following general approach.

1. Compute all paralogous protein pairs in an organism.
2. Collect “Indel (I)” and “Non-Indel (NI)” pairs.
3. Compare functional similarity of “Indel” and “Non-Indel”.

Obviously, there are several issues that need to be resolved in the above approach.
(i) First of all one needs to use a good definition of paralogous proteins (paralogs);

this is a relatively easy task as most studies define two proteins as paralogs if their
sequence identity and similarity, as given by a classical alignment, are above a threshold
value and are statistically significant.

(ii) Then the organism on which the study will be based must be chosen. In this
paper we have opted to examine paralogous protein pairs in E. coli K12. This choice of
organism is motivated by our particular interest in studying bacterial organisms. 1

(iii) It is then of key importance to provide a formal definition of an indel. Note that,
while amino acid substitution is an evolutionary process that is reliably covered by the
classical dynamic programming alignment procedures, realistic computational models
for insertions and deletions (indels) have remained an insufficiently solved problem.
There are sound indel studies both for DNA, [34,14,20] and proteins [2,28,4,23]. How-
ever, models have usually been inferred for highly specific datasets and slightly contra-
dict each other such that they are not generally applicable. Given the unclear actual
situation, we have employed the classical Needleman-Wunsch alignment procedure
with affine gap penalties to compute paralogous protein pairs, in order to account both
for computational efficiency and soundness.

The main problem we deal with in this context was to reliably distinguish between
alignment gaps that have been introduced by point mutations and those that have not.
This is analogous to that of identifying alignment scores that indicate alignments that re-
flect truly evolutionary relationships. The corresponding statistical frameworks [16,8]
allow for reliable statistics even if empirical statistics, due to insufficient amounts of
data, are not applicable. In analogy to this, we have developed a statistical framework,
based on pair HMMs, with which to identify alignment gaps that are statistically sig-
nificant, hence more likely refer to insertions and deletions, introduced by evolution.
In order to measure the functional impact of indels compared to that of substitutions,
“Indel” (I) and “Non-Indel” (NI) pairs that are compared with each other will refer to

1 Note that, in prokaryotes, in addition to the classical transfer of genetic material from par-
ent to offspring, other phenomena can be responsible for mutational changes. For example,
horizontal gene transfer, that is, transfer of genetic material between arbitrary prokaryotic
cells, sometimes of different species, has been made responsible for the rapid development of
drug resistance [18,15]. Therefore, to study the paralogous proteins of prokaryotes is also of
biomedical interest.
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the same levels of sequence identity. Hence, the same amount of non-identical positions
either contain significant indels (I) or a significant amounts of substitutions (NI).

(iv) The final challenge is the definition of functional similarity between protein
pairs. One possible approach is to measure functional similarity by the use of GO based
distances, as recently suggested [19,31] (see section 2.2 for further details).

According to the suggested strategy from above, we found that “Indel” protein pairs
are significantly less functionally similar than “Non-Indel” pairs, although being of
similar alignment scores. Perhaps this finding is quite intuitive. However, the main goal
of this paper is a sound, formal framework for quantifying what an indel is with respect
to sequence similarity and length and what particular indel lengths imply changes in
functional similarity measured in terms of GO based distances. Our results do not only
provide a rigorous framework for understanding the relationship between indels and
functional similarity but also aim to lay some of the computational foundations of a
novel large-scale approach to drug target search by extending the previous works of
[6,5,21]. In sum, our major goals in this study are:

(1): To provide, based on pair HMMs, reliable formulas to assess the resulting from
alignment methods with affine gap penalties.

(2):To carry out a large-scale study on the correlation of indel size and functional
similarity for paralogous proteins (made in the context of E. coli). Note that, thanks to
our arrangements, differences in functional similarity cannot be due to differences in
alignment scores. Therefore, this study strongly suggests that indels, as evolutionary
sequence variation, contribute significantly more to functional changes in the affected
proteins than substitutions only.

To the best of our knowledge, these points have not been addressed in a formal sense
before. In general, this study provides novel ideas on how to use classical alignment
procedures more reliably in order to account for functional similarity, by incorporating
indel statistics.

2 Methods

2.1 Indel Length Statistics

Problem Description. The driving problem is described by the following scenario. Let
T = {(xt, yt) | t = 1, ..., |T |} be a set of pairs of sequences over a common alphabet
Σ. The alphabet Σ will later be identified with the set of amino acids and sets T will
contain pairs of proteins of interest. Let A be an alignment procedure and

LA(x, y) resp. IA(x, y)

be the length of the alignment of x = x1...xm, y = y1...yn resp. the length of the
largest indel that can be found in the alignment, as computed by A. If k is an integer,
we are interested in the probabilities

Pn,T (IA(x,y)≥k) := P (IA(x, y) ≥ k |LA(x, y) = n, (x, y) ∈ T ) (1)

that the largest indel in the alignment of x and y is greater than k or, equivalently,
that the alignment contains an indel of length at least k, given that x and y have been
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Fig. 1. Pair HMM (left) and the Markov chain resulting from it (right)

drawn from T such that the alignment of x and y is of length n. Clearly, k depends
on n and also on T if, for example, T contains all protein pairs that yield a similar
alignment score. An analytical treatment of the problem is highly desirable, as there
usually are insufficient amounts of data for statistically reliable empirical distributions.
Note that, in our case, we have only on the order of tens of proteins, sampled from
the pools of interest, which is by far too little to infer reliable statistical estimates. This
usually is also the justification of an analytical treatment of score statistics. Note that the
score statistics problem refers to replacing IA(x, y) by SA(x, y), the alignment score
attributed to an alignment of x and y computed by A. In the case of database searches,
pools T then may refer to all alignments where x = x0 in all pairs (x, y) , for a single
protein xo. We will refer to the problem of computing probabilities of the type (1 as the
indel length probability (ILP) problem.

Pair HMMs. We consider the ILP problem for A being the Needleman-Wunsch pro-
cedure for global alignments with affine gap penalties [22,13], as we are interested
in statistics for paralogs which have been inferred by globally aligning all proteins in
E. coli. Pair HMMs provide an approach to computing global alignments with affine
gap penalties which is equivalent to the dynamic programming approach of Needleman-
Wunsch. As pair HMMs are standard, we only give a brief description here and refer
the reader to [10] for details.

Consider the pair HMM in Fig. 1. It generates alignments by traversing the hidden
states according to state transition probabilities (parameterized by p and q) and emitting
pairs of symbols according to emission probability distributions attached to the “hid-
den” states, i. e. matches/mismatches from the ’M’ state by producing a pair of symbols
xi, yj with probability pxiyj and symbols paired with gaps from states ’X’ and ’Y’.
Upon termination of the run through the hidden states, one has obtained an alignment
of two sequences x = x1...xm, y = y1...yn, according to the sequence of symbol/gap
pairs that had been generated along the run. As is well known [10], a Needleman-
Wunsch alignment with affine gap penalties of two sequences x = x1...xm, y = y1...yn

can be obtained by computing the most likely sequence of hidden states (the Viterbi
path) that yields an alignment of the two sequences by emitting suitable combinations
of symbols along the run. Note that we can neglect transition probabilities referring to
start and end states as they do not affect our further considerations.

Owing to the formulation of the ILP problem, we are only interested in statistics on
sequences of hidden states, namely in probabilities referring to lengths of consecutive
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runs with either the ’X’ or the ’Y’ state. Therefore, we can direct our attention to the
Markov chain of Fig. 1 which has been obtained from the pair HMM by collapsing the
hidden states ’X’ and ’Y’ of the pair HMM into the ’Indel’ state of the Markov chain.
The Markov chain generates sequences over the alphabet §̃ := {′M ′,′ I ′} where ′M ′

and ′I ′ are shorthand for ′Match′ and ′Indel′.
Consider now Cn,k, the set of sequences over the alphabet §̃ of length n that contain

a consecutive ′I ′ stretch of length at least k. We suggest the following procedure in
order to provide good approximations of Pn,T (IA(x,y)≥k) from (1).

COMPUTATION OF Pn,T (IA(x, y) ≥ k):
1: Align all sequence pairs from T .
2: Infer p and q by training the pair HMM with the alignments.
3: n← length of the alignment of x and y
4: ComputeP (Cn,k), the probability that the Markov chain generates a sequence from
Cn,k.

5: Output P (Cn,k) as an approximation for Pn,T (IA(x, y) ≥ k).

The idea of step 1 and 2 is to design a pair HMM that generates alignments from
the pool T . This is straightforwardly achieved by a standard Baum-Welch training with
the Needleman-Wunsch alignments of the protein pairs from T . In our setting, this re-
duces to simply counting ’Match’-to-’Match’ and ’Indel’-to-’Indel’ transitions in the
alignments under consideration to provide maximum likelihood estimates for the de-
rived Markov chain, as the pair HMM is only of virtual interest. Clearly, any statistics
on the pair HMM, thanks to the relationship with the Needleman-Wunsch procedure,
will yield good approximations to alignment statistics. Note that this basic strategy has
recently been successfully employed to model certain alignment features in a compar-
ative genomics study on human-mouse DNA alignments [20]. Therefore, computing
Pn,T (IA(x, y) ≥ k) has been translated to computing the probability that the Markov
chain generates a sequence from Cn,k. However, surprisingly, efficient computation
and/or closed formulas for such probabilities had been an unsolved mathematical prob-
lem so far. Related work only refers to respective formulas for i.i.d. processes on a
two-letter alphabet [27].

Efficient Computation of PT (Cn,k). Imagine that, as usual, we have collected the
Markov chain parameters, as given by Fig. 1, into a state transition probability matrix
and an initial probability distribution

A = (aij)i,j=1,2 =
[

q 2p
1 − q 1 − 2p

]
and π = e2 = (0.0, 1.0)T .

That is, state 1 corresponds to the ’Indel’ state and state 2 corresponds to the ’Match’
state. The initial distribution reflects that we assume that an alignment always starts
from a ’Match’ state (by adding a match to the alignment at the artificial position 0),
in order to take into account that starting a global alignment with a gap is scored with
a gap opening penalty just as if coming from a ’Match’ state. For example, according
to the laws that govern a Markov chain, the probability of being in state 1 at position t
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in a sequence generated by the Markov chain is P (Xt = 1) = eT
1 A

tπ = eT
1 A

te2 =
(1.0, 0.0)At(0.0, 1.0)T . We first would like to point out that naive approaches to com-
puting P (Cn,k) fail. For example, let Bt,k be the set of sequences that contain a con-
secutive ’Indel’ run of length k, stretching over positions t to t+ k − 1. Realizing that
Cn,k = ∪n−k+1

t=1 Bt,k and proceeding by inclusion-exclusion for computing probabili-
ties (i.e. P (Cn,k) =

∑n−k+1
m=1 (−1)m+1

∑
1≤t1<...<tm≤n−k+1 P (Bt1,k ∩ ...∩Btm,k))

results in a procedure that is exponential in n, i.e. in the length of the alignment.
Efficient computation of these probabilities is facilitated by the following trick which

we have adopted from [27]. Instead of Bt,k, consider Dt,k, the set of sequences that
have a run of state 1 of length k that not only stretches from positions t to t+ k − 1 as
before, but also ends at position t+ k − 1, that is, the run is followed by a visit of state
2 at position t+ k. According to elementary Markov chain theory, one obtains

P (Dt,k) =

{
P (Bt,k) · a21 = (eT

1 A
tπ) · ak−1

11 a21 t < n− k + 1
P (Bn−k+1,k) = (eT

1 A
n−k+1π) · ak−1

11 t = n− k + 1
(2)

where, in the second case, Dn−k+1,k = Bn−k+1,k is the event that the last k positions
in the run correspond to visits of state 1. Clearly, we have Cn,k = ∪n−k+1

t=1 Dt,k as
well as for the Bt,k. For technical convenience, we further define r(s) := P (Xs =
1) = eT

1 A
se2 for s ≥ 1 and Ql,m :=

∑
1≤s1,...,sm≤l
s1+...+sm=l

∏m
i=1 r(si) for 1 ≤ m ≤ l ≤ n

where the sum reflects summing over partitions of l into m positive, not necessarily
different, integers si. Note further that the intersection of Dt1,k and Dt2,k is empty if
t2 − t1 ≤ k and that, after a run which is terminated by a visit of state 2, the prob-
ability distribution coincides with the initial probability distribution π = (0.0, 1.0)T

which corresponds to being in a ’Match’ state. This implies P (Dtj ,k ∩ Dtj+1,k) =
P (Dtj ,k)P (Dtj+1−tj−k−1,k) for tj+1−tj > k (∗). Proceeding by inclusion-exclusion,
we obtain (a∗ := (ak−1

11 am
21))

P (Cn,k)
(∗)
=

n−k+1∑

m=1

(−1)m+1
∑

1≤t1<...<tm≤n−k+1

P (Dt1,k)
m−1∏

j=1

P (Dtj+1−tj−k−1,k)

(2),(∗∗)
=

n−k+1∑

m=1

(−1)m+1
∑

1≤t1<...<tm≤n−k+1

r(t1)
m−1∏

j=1

r(tj+1 − tj − k − 1) · (a∗)m

(∗∗)
=

n−k+1∑

m=1

(−1)m+1

[

(
n−mk∑

l=m

Ql,m)(a∗)m +Qn+1−mk,m(a∗)m−1(ak−1
11 )

]

.

where, in the third line, a21 has to be replaced by 1 in a factor with tm = n − k + 1

(∗∗), referring to the the special event Dn−k+1 (see (2)).
Finally observe that the recursive relationshipQl,m =

∑l−m+1
s=1 r(s)Ql−s,m−1 yields

a dynamic programming procedure to efficiently compute all of the neededQl,m, hence
all of the needed P (Cn,k).
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Table 1. Markov chain parameters

Similarity (%) 50 - 55 55 - 60 60 - 65 65 - 70 70 - 75 75 - 80 80 - 85 85 - 90 90 - 95 95 - 100
No. Alignments 20317 1793 709 345 186 102 62 49 40 26

1 − 2p 0.9349 0.9559 0.9687 0.9754 0.9828 0.9867 0.9893 0.9941 0.9959 0.9997
q 0.6383 0.6585 0.6666 0.6415 0.6188 0.6319 0.6516 0.6135 0.6651 0.8462

2.2 Functional Similarity

Gene Ontology (GO) [33] provides a well defined structured description of functional
annotation and it has been reliably used in innumerable studies. Thanks to its organi-
zation, GO can be easily described. It consists of three “orthogonal” taxonomies (as-
pects) that contain terms to describe attributes related to molecular function, biological
process and cellular component. The taxonomies are formally designed as Directed
Acyclic Graphs (DAGs). A gene product is associated with a term if the term applies to
the product. As a consequence, a protein can be identified with a subset of terms, hence
a sub-DAG.

A variety of studies have been concerned with quantification of functional similar-
ity based on comparison of GO terms. Among these approaches, Lord et al. [19] have
proposed semantic similarity measures for GO terms that can be combined in different
ways [19,32,31] to measure protein similarity. In parallel, studies on the correlation of
semantic similarity and biological measures of similarity have confirmed the validity of
these approaches [32,7]. Pesquita et al. [25] present a study that shows that a semantic
similarity measure described by [29] is, relative to a variety of aspects, the best measure
overall. We have opted to define functional similarity between two proteins as an exten-
sion of the semantic similarity measure given by [29] to protein similarity, as described
by [31].

3 Results

3.1 Data, Alignment Method and Markov Chain Parameters

We downloaded the full set of 4342 proteins of E.coli K12 from the Uniprot database
[35]. To calculate pairwise global alignments we used the “GGSEARCH” tool from the
FASTA sequence comparison package [24]. As a substitution matrix, BLOSUM50 (de-
fault) was used. GGSEARCH implements the classical Needleman-Wunsch alignment
algorithm with affine gap penalties.

To ensure high quality of the alignments in a first step, we discarded all alignments
below 50% alignment similarity 2 which resulted in about 23000 aligned protein pairs.
Note that alignment similarity is obviously correlated to the occurrence of gaps. In
order to decorrelate our results from alignment similarity to a maximum degree (other-
wise results might be due to differences in alignment similarity, not the occurrence of

2 Alignment similarity, as defined by GGSEARCH, is the number of alignment positions of
identical or highly similar amino acids, divided by the length of the alignment. Therefore, low
similarity is either due to indels or badly matching amino acids.
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indels), we grouped the alignments into ten different pools, according to their similarity
scores, and inferred the parameters of the corresponding Markov chains, according to
the procedure described in subsection 2.1. See table 1 for Markov chain parameters of
the different pools.

After computation of these parameters, we discarded alignments of less than 20%
identity and an E-value of greater than 10−6 (as computed by GGSEARCH) to en-
sure homology to a maximum degree. However, we had kept possibly non-homologous
pairs for training the Markov chains to take into account the “alignment noise” we later
would like to get rid of and to increase the amount of training data which enhances the
reliability of the inference process.

3.2 Determining Indel and Non-indel Alignments

We would like to distinguish between two kinds of alignments, indel resp. non-indel
alignments. To be more precise, we are interested in alignments of length n and maxi-
mal indel length k such that

P (Cn,k) ≤ θI resp. 1 − P (Cn,k+1) ≤ θNI

where θI , θNI are appropriate significance levels. Note that the quantity 1−P (Cn,k+1)
is just the probability that an alignment does not contain an indel of size larger than k.
In order to determine the significance levels θI , θNI we separated indel pairs (I) and
non-indel pairs (NI) for varying θI , θNI and computed the average functional simi-
larity in the corresponding groups for the three GO categories “Function”, “Process”
and “Component”, according to the procedures described in section 2.2. We found that
alignments with P (Cn,k) ≤ 10−6 contain large gaps that, rather than corresponding to
insertions and deletions in the evolutionary sense we are interested in, reflect regions
that separate domains. In order not to falsify our indel study, we discarded about 40
putative multi-domain alignments. 3

Paralogous Protein Pairs: In the following, we will refer to the remaining protein pairs
(sequence identity ≥ 20%, alignment similarity ≥ 50%, P (Cn,k) > 10−6 as paralo-
gous protein pairs. We observed that functional similarity, for all categories, decreases
for the indel pairs while lowering θI and increases while lowering θNI (data available
upon request). We have opted to choose θI = 0.045, θNI = 0.25 as it establishes an
optimal trade-off between differences in GO similarity and sufficient amounts of align-
ments for statistical examinations.

3.3 The Twilight Zone

We sorted the set of paralogous protein pairs, resulting from the filtering procedure
described above, according to their sequence identity. We computed the average GO
similarity for indel pairs (I), non-indel pairs (NI) and overall (O) above a given iden-
tity threshold where indel and non-indel pairs are defined, as described in the above

3 Note that this points out that our method can also be potentially used to get aware of multi-
domain alignments that are a classical source of disturbances while screening databases for
homologous counterparts [26].
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Fig. 2. GO similarity vs. identity (top row) resp. alignment similarity (bottom row) levels, for
fixed p-values of 0.045 (indels I) and 0.25 (non-indels NI) for paralogous E.coli protein pairs
(definitions see subs. 3.2)

subsection 3.2. Moreover, we carried out t-tests to determine the statistical significance
of the differences. Results are displayed in the top row of Fig. 2 and Table 2. Clearly,
GO similarity is lower for indel pairs and higher for non-indel pairs in all three GO
categories in the region between 20% and 35% identity. T-tests confirmed statistical
significance for all of the differences (see Table 2) in that region. As outlined before,
given that the amount of non-identical, substitution or indel, positions in the compared
alignments are on equal levels, this gives statistical evidence of that insertions and dele-
tions highly likely are the more significant evolutionary cause of functional changes
than substitutions.

Above ≈ 37.5% identity for “Function” and “Process” and above ≈ 42.5% iden-
tity for “Component” differences become insignificant which confirms that beyond the
twilight zone, structural, hence functional, similarity can safely be assumed. In the area
of 35% to 40% differences only remain significant for the category “Component”, a
phenomenon that remains to be explained.

We also display differences between the three groups when ordered according to align-
ment similarity (Fig. 2, bottom). Here as well, there are obvious differences in functional
similarity depending on significant occurrence of either gaps or no gaps in the alignments.
In sum, the results strongly suggest that an assessment of functional similarity should not
only be based on common alignment quality measures (identity, similarity, score signif-
icance), but also on the significance of the occurrence of insertions and deletions.

4 Discussion and Outlook

We have conducted a large-scale study on the correlation of the occurrence of indels in
the alignments of paralogous proteins in E. coli and their functional similarity. We have
demonstrated, based on a sound statistical framework, that the occurrence of indels is
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Table 2. Twilight Zone Statistics for paralogous E.coli protein pairs (definition see subs. 3.2)

No. Alignments GO Similarity T-test
GO category Identity I NI O I NI O I vs. O NI vs. O I vs. NI

≥ 20.0 841 647 4413 0.6724 0.7507 0.7069 3.6844 3.9313 4.9547
≥ 25.0 468 314 2219 0.6871 0.7783 0.7356 4.1953 2.9257 4.4796

Function ≥ 30.0 183 159 1030 0.7347 0.8132 0.7736 2.0633 2.0135 2.6321
≥ 35.0 75 98 546 0.7629 0.8515 0.8304 2.2001 0.9201 2.1015
≥ 40.0 42 63 328 0.8522 0.8610 0.8796 0.7731 -0.7300 0.1808
≥ 20.0 813 670 4500 0.5609 0.7521 0.6699 8.4619 6.2435 9.5150
≥ 25.0 446 326 2235 0.5443 0.7602 0.6756 7.5987 4.4952 7.6959

Process ≥ 30.0 177 160 1030 0.6069 0.8030 0.7261 4.3747 3.1777 4.9147
≥ 35.0 76 97 545 0.7140 0.8193 0.8053 2.3570 0.4757 1.9635
≥ 40.0 45 62 333 0.8122 0.8372 0.8653 1.3118 -0.8248 0.4209
≥ 20.0 542 381 2986 0.8625 0.9376 0.9139 4.7200 2.2012 4.4590
≥ 25.0 281 182 1479 0.8644 0.9483 0.9208 3.9673 2.0667 3.9138

Component ≥ 30.0 123 106 750 0.8698 0.9746 0.9438 3.2578 2.6746 3.6899
≥ 35.0 60 63 411 0.8390 0.9843 0.9472 2.9245 3.2622 3.3570
≥ 40.0 36 39 257 0.8443 0.9746 0.9554 2.2478 1.2842 2.2405
≥ 45.0 19 25 175 0.8832 0.9604 0.9689 1.3316 -0.4529 1.0406

correlated to lower functional similarity of the aligned protein pairs, although the com-
pared protein pairs had similar alignment scores. Functional similarity was measured
by recently suggested GO based functional distance measures.

For an analytical treatment of indel significance, we have developed a statistically
sound and computationally efficient strategy, based on pair HMMs. With it, we can
separate true indel alignments from “indel noise” introduced by the classical dynamic
programming procedures. This problem is analogous to that of computation of signifi-
cance levels for alignment scores which can be obtained according to the well-known
Dembo-Altschul-Karlin statistics [16,8]. However, to the best of our knowledge, the
problem of indel significance had not been tackled before.

Future work will be to finetune our statistical model, as was done for alignment
scores [1]. Models for indels in local alignments will also be developed. Interesting truly
biomedical issues will also be addressed. For example, indel studies can analogously be
conducted for orthologous protein pairs. A large-scale comparison of orthologous pairs
of proteins from human and pathogens potentially will reveal new drug targets, as has
already been demonstrated [6,5,21].
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Abstract. Repeats form a major class of sequence in genomes with
implications for functional genomics and practical problems. Their de-
tection and analysis pose a number of challenges in genomic sequence
analysis, especially if the genome is not completely sequenced. The most
abundant and evolutionary active forms of repeats are found in the form
of families of long similar sequences. We present a novel method for
repeat family detection and characterization in cases where the target
genome sequence is not completely known. Therefore we first establish
the sequence graph, a compacted version of sparse de Bruijn graphs.
Using appropriate analysis of the structure of this graph and its con-
nected components after local modifications, we are able to devise two
algorithms for repeat family detection. The applicability of the methods
is shown for both simulated and real genomic data sets.

1 Introduction

In the later 1980’s, scientists had the first contact with genome sequences of
higher-order organisms. At that time, they were amazed by the amount of “junk”
in these sequences. Examining this junk in the following decades, they discovered
that these portions of the genome were less useless than they first suspected. In
fact, there is a myriad of active elements between coding sequences, some of
them being able to replicate themselves, acting like virus DNA, termed insertion
sequences in bacterial genomes, and mobile elements in eukaryotes. They are in
fact believed to be the vestiges of virus infections in ancestral species.

Although repetitive elements may not be active parts of the genome, since
they encode only proteins which are related to their own replication, they are
able to change the genome in many ways. It is known that pairs of insertion
sequences act sometimes together and duplicate not only themselves, but the
whole sequence between them [11]. Also when mobile elements work alone,
the position where the new copy is inserted may belong to important regions
in the genome, like active genes. In fact, insertions of mobile elements are ob-
served in several genetic disorders, like Duchenne muscular dystrophy, type 2
retinitis pigmentosa, β-thalassemia, or chronic granulomatous disease [15].

A maybe less noble, but really important motivation to study repetitive ele-
ments is the waste of time and money they cause in genomic research. Finishing
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a whole eukaryotic genome sequencing project is neither cheap nor fast, and the
study of specific regions in these huge genomes still depends on specific primer
design. But even when using very specific primers, PCR experiments may result
in garbage, if the sequence to which the primer was designed appears thousands
of times in the whole genome. In many cases, however, there may be enough
sequenced information available to give an overview of the repetitive elements
in the genome. Finding these elements in an incompletely sequenced, unfinished
genome is the aim of this work.

Strategies for de novo repeat identification usually assume that two similar
sequences in a given collection cannot be different copies of the same locus of the
genome. Therefore they may assume that alignments with quality above a certain
threshold provide evidence of a repeat family. We overcome this limitation by
accepting any kind of sequence sets as input, including sets with several copies of
the same locus. For doing this, we do not align the sequences, like the traditional
approaches [1], but partially assemble them using a de Bruijn graph.

The first use of de Bruijn graphs in Bioinformatics was probably the Eulerian
path approach to sequence assembly proposed by Idury and Waterman [9] and
extended by Pevzner, Tang and Waterman [14]. Despite the success achieved
by Pevzner and colleagues’ Euler assembler in assembling bacterial genomes,
the use of de Bruijn graphs for other biological applications does not seem to
be further explored. We find many extensions of the de Bruijn graph based
assembly approach in the recent literature [2,3,4,5,19], but they usually focus
either on improvements in error correction methods or in adapting the original
method to new sequencing data. Other works present graphs that slightly remind
of de Bruijn graphs, but miss the main feature of them, namely, the unique
representation of tuples of a given size [13,17].

The main problem with de Bruijn graphs becomes clear as soon as one starts
working with them. As Myers [12] points out, de Bruijn graphs are simply space
inefficient. And we believe Myers is right when he says that in the context of
sequence assembly the whole process of cutting reads into small pieces to finally
build the de Bruijn graph may not be necessary. To circumvent this, we propose
an efficient implementation of sparse de Bruijn subgraphs, detailed in [16], and
two strategies for using them as repeat family detection tools in incompletely
sequenced genomes.

2 Sparse de Bruijn Graphs

A d-dimensional de Bruijn graph G = (V,A) on an alphabet Σ is the graph
defined as follows:

V = Σd

A = {(u, v) | u, v ∈ V and ui+1 = vi, for all i, 1 ≤ i < d}

where ui denotes the ith character of string u. Strings of length at least d over
the same alphabet describe walks on the d-dimensional de Bruijn graph.
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Let s be a string over Σ. The d-dimensional spectrum of s, spectrum(s, d), is
the set of all substrings of s with length d. The spectrum of a set of sequences
is the union of the individual spectra. Given a set S of strings, the associated
d-dimensional de Bruijn subgraph is the graph GS = {VS , AS}, where:

VS = spectrum(S, d)
AS = {(u, v) | u, v ∈ VS and u1 . . . udvd ∈ spectrum(S, d+ 1)}.

A vertex in an associated de Bruijn subgraph is called a junction when it has in-
degree greater than 1. A vertex with out-degree greater than 1 is called bifurcation.

Sequence associated de Bruijn subgraphs have a very nice asymptotic be-
havior. Their maximum number of nodes increases linearly with the size of the
input, and even decreases with the dimension of the graph. The main problem is
that, although these graphs scale very well with the sequence set size, the graphs
corresponding to genomes as small as bacterial genomes are already huge.

2.1 Sequence Graph

De Bruijn graphs are by definition sparse [6, Chapter 7]. Even in applications
where smaller dimensions are required [8], their number of edges in the DNA
world is not greater than four times the number of nodes. Their subgraphs are
surely sparser. In a typical sequence analysis application [14,20], the probability
of having a node with maximum in- or outdegree is very low. Therefore the
graph construction in such applications is usually followed by a step where long
branch-free paths are collapsed to single nodes. In [16], we present a way to
directly construct the compact representation of a sparse de Bruijn graph, called
a d-dimensional sequence graph, or simply sequence graph.

An example of a sequence graph is shown in Figure 1. Like a d-dimensional
de Bruijn subgraph, every d-tuple over the given alphabet may be represented
by at most one vertex in the sequence graph. Furthermore, a sequence graph
may contain an arc (u, v) only if the suffix of length d− 1 of u matches perfectly
the prefix of v. The main difference between a sequence graph and a de Bruijn
graph is that vertices in a sequence graph are not limited to the size d, but
may have any size between d and |Σ|d + d − 1. This allows the representation
of non-branching paths in a single node. The compression, however, depends on
the way the structure is built.

There is an index mapping every d-tuple represented by the sequence graph
to the node in which it is found. The tuple position in the node is also stored,
so that it may be directly accessed, after the index search. We also extend the
natural concept of neighborhood from nodes to tuples. In a sequence graph, two
d-tuples a and b are called neighbors if either there is an arc (u, v) such that the
suffix of length d of u is a, and the prefix of length d of v is b; or both a and
b are in the same node and the occurrence of a precedes the occurrence of b by
one position.

Apart from the inclusion of nodes, there are two operations that can be applied
on the set of nodes.
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Fig. 1. Sequence graph corresponding to a 3-dimensional de Bruijn subgraph on the
alphabet Σ = {A, C, G, T}. Links connecting the index to the node TAAGATGCATATTGTG
are shown as black arrows with offsets, all other such connectors are shown in gray.

Cut: Transforms a single node in two neighbor nodes. A cut does not change
the set of sequences represented by the graph, since no new tuple of size d
or greater is created, and the new edge binds two tuples that were neighbors
before.

Merge: Is the inverse operation of cut. Notice that this operation can only be
applied on neighbor nodes u and v such that u has outdegree 1 and v has
indegree 1. The operation removes the edge (u, v) by merging its nodes into
a single node.

2.2 Repeat Families in Sequence Graphs

The length of repetitive elements may vary from the few bases of short tandem
repeats to the thousands of bases of long transposons. We know that only exact
repeats with length greater than the underlying graph dimension can be iden-
tified in such a graph, since they are represented by single nodes both in the
sequence graphs, and in the original form of de Bruijn graphs.

Although they may be much smaller than the graph dimension, the exhaus-
tive, uninterrupted succession of almost perfect copies in tandem repeats is able
to create tangled patterns in the graph. In these cases, the large number and
perfection of copies is responsible for the rising of larger perfect matches.

In the case of interspersed repeats, their replication mechanism allows the
appearance of copies which are physically far away from each other in the DNA
molecule. On the other hand, the content of a single copy is usually unique. Apart
from the usual reverse short repeats in their extremities, the sequence inside
mobile elements often lacks exact repeats. Therefore the portion of a sequence
graph corresponding to a repeat family is much better organized than the tangled
tandem repeats regions. Often the sequence graphs of repeat families are directed
acyclic graphs. This can be used as a starting point for repeat identification.
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3 Repeat Family Detection

Although the real challenge we want to address with this work is the detection of
repeat families in eukaryotic genomes, our first subject of study are the simpler,
easier to understand bacterial genomes. A typical bacterial genome is not bigger
than six or seven million base pairs, and roughly the same number of l-tuples,
when l is relatively small. The number of possible strings of length l for an
alphabet of size 4, by contrast, is already huge for very small values of l. For
typical sequence analysis applications, like approximate string matching, the
value of l is chosen large enough to allow the assumption that very few tuples
appear twice in the genome just by chance.

The number of repeat families in a single genome is quite small. The average
number of different families in a single genome found in [11] is 2.79. The copy
number of a family in a single genome is also not big. Although the number of
copies can be as big as 14, like the number of copies belonging to the family
IS1 in Mycoplasma, the average number of distinct elements of the same family
is 2.27. Therefore, assuming that copies are uniformly spread along the genome
sequence, we may expect repeats to be separated by quite long non-repetitive
sequences. This may be also true for some eukaryotes, like Arabidopsis thaliana,
which has 10% of its genome composed by mobile elements [7], while other
eukaryotes have a much more complicated genome structure.

3.1 Connected Components

Nodes corresponding to repetitive sequences may be discovered and marked dur-
ing the sequence graph construction. Nodes corresponding to unique sequences
either represent larger sequences from the unique parts of the genome, or are
the result of small dissimilarities between elements of the same repeat family. In
the second case, unique nodes are not larger than a repeat family element, since
entities of the same repeat family are similar enough to share perfect matches.
On the other hand, unique sequences between repeat copies can be much longer.

The sequence graph for a genome must therefore be composed of clusters of
small repetitive nodes, interconnected by longer single ones. As a result, the dele-
tion of long unique nodes may decompose the graph into a few connected com-
ponents, containing one or more repeat families. Based on this simple principle,
we devised a method for separating repeat families in a genome. The procedure
is described in Algorithm 1. The input is a set S of reads of some genome and
a length threshold value l. We start building the sequence graph for this set of
sequences. Originally, nodes with different sequence sets cannot be merged. As
a result, every read end coincides with a node end, which leads in many cases
to branch free paths in the sequence graph. Therefore we ignore this restriction
and merge nodes in branch free paths, as long as they are either both marked
as repeats, or both unmarked, even if their sequence sets are not identical. The
resulting graph may contain long single nodes, exceeding the length threshold
l. We delete them, and merge the repeated nodes that were not merged only
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because of the now deleted long nodes. Notice that, at this point, no other node
can be merged or deleted.

The resulting graph is already a collection of separated connected components.
However, some of them may be the result of unrelated small perfect matches.
These repeats created by chance are easy to identify. They are in components
with few nodes (not more than 5), with a single, short repeated node in the
center. We call these components small components. The small components are
removed from the graph as well, leaving only components corresponding to larger
families.

We implemented this approach in the Java programming language and tested
it with artificially created chromosomes, simulating situations from simple bacte-
rial chromosomes to chromosomes which are more than 50% composed of repet-
itive elements. Details about simulation and results are given in Section 4.1.

Algorithm 1. Connected Components
1: function IsolateComponents(S , l)
2: Build the sequence graph for S
3: Merge all possible pairs of nodes
4: Remove all single nodes of length ≥ l
5: Merge all possible pairs of nodes
6: Remove all small components
7: return the resulting connected components
8: end function

3.2 Combining Nodes

In cases when elements of the same repeat family differ in many close bases, the
connected component based detection method may miss some less represented
families. This happens because the few sequences do not share any l-tuple in a
certain region.

Algorithm 2. Combine
1: procedure Combine(n1, n2, t)
2: Let n1 be the longer of the two nodes
3: Align the sequences of n1 and n2, creating a semi-global alignment of length l
4: if the alignment score is smaller than t ×

�
l−d+1

d

�
then

5: Cut the node n1 at the end of the aligned prefix
6: Let n1 be the left portion of the cut node n1

7: Create a new node n with the consensus of n1 and n2

8: Bind the nodes in the neighborhood of n1 and n2 to n
9: Remove n1 and n2

10: end if
11: end procedure
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As a result, although two (or more) long closely related single nodes can be
found in the graph, they are discarded as long unique nodes, and the remaining
part is either detected as a partial family, or is discarded as a small compo-
nent. On the other hand, repeats of the same family often share at least one
l-tuple somewhere along their sequence. And in the cases where sequences share
only a few tuples, the nodes representing the common ones can be extended by
combining the closely related unique nodes around them.

By combining two nodes we mean replacing both nodes by a single node whose
sequence is the consensus between them. The procedure is shown in Algorithm 2
and represented in Figure 2. In the most general case, the two nodes to be
combined, n1 and n2, are of different length. We assume w.l.o.g. that n1 is
longer than n2.

In the first step, the node prefixes are aligned. We use a semi-global align-
ment algorithm [18, Section 3.2.3] for that. The score matrix considers matches
between any two possible symbols found in the IUPAC standard code for nu-
cleotides. For symbols that represent a single nucleotide (A, C, G, T), the score is
simply 0 for a match and 1 for a mismatch. For matches involving at least one
symbol representing a set of nucleotides, like W = {A, T}, the score is 0 if one
set contains the other; otherwise it is the minimum number of replacements and
deletions needed to transform one set into the other. For instance, the score for
aligning W with G is 2, since we need to replace one of the elements of W by G,
and delete the remaining one; on the other hand, the score for aligning W with T
is 0, since W contains T.

GGATAGGC AAT

A

AAT GGC A

A CT G

A AC TG CA TA ACT GG

A AC TG CA TA ACT GG

A

T

A

CAGT C T TA CG

TCTGACWAAC

Fig. 2. The combine operation. The two shaded nodes on the left are combined, and
result in the shaded node on the right. Two nodes are only combined when the edit dis-
tance between their prefixes is below a certain threshold. The new node label contains
the consensus sequence.

Alignments with a score below a certain threshold allow the combination. The
threshold is defined by the minimum number of mismatches needed to separate
the nodes, m, rescaled by a user defined scale factor t. The minimum number of
mismatches is given by

m =
⌈
l − d+ 1

d

⌉
,

where l is the alignment length and d is the underlying de Bruijn graph
dimension.

When the alignment score allows a combination, the longer of the two nodes,
n1, is cut at the point where the aligned prefix ends. The prefix and the second
node n2 are then replaced by a node n representing the alignment consensus.
This new node is finally connected to the neighborhood of the replaced nodes.
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In the general case, combining two nodes does not reduce the graph size,
but its complexity. In practice, a series of combinations may reduce tangled
subgraphs to simple paths, which may be finally merged into a single longer node.
Especially for more complex datasets sequenced at low genome coverage, this
procedure gives a considerable advantage over the simple connected component
approach, as shown by the results in Section 4.2.

4 Results

We applied our methods to both real and artificially created data. Comparing our
methods to already published de novo repeat identification methods is not possible
because they differ both in the input and in the output. We have as input not conti-
nous portions of an incompletely sequenced genome,but a low coverage set of reads.
And we output connected components, which may be interpreted as collections of
reads which belong to the same repeat family. Therefore, when measuring the suc-
cess of our method in separating repeat families in a genome, the most successful
scenario is clearly the situation where, we get each family in a different connected
component, and components containing only members of a single family.

4.1 Connected Components

For a proof of concept, we applied the connected component strategy to ar-
tificially created chromosomes with different numbers of repeat families. Each
simulated chromosome has a total length of 1 million base pairs and is composed
by two kinds of sequences:

Background Sequence: The background sequence corresponds to the non-
repetitive genome sequence. In our tests we used 19-dimensional de Bruijn
subsequences as background, which means that the background sequences
do not contain any duplicated substring of length 19.

Repeat Families: The repeat families are collections of similar sequences,
called the family members. They originate from a 19-dimensional de Bruijn
subsequence, called the family’s base sequence, which is then used to create the
other family members. Families are created in an incremental tree-like fashion:
for creating a new member, we randomly take a pre-existing one and imper-
fectly duplicate it by simulating insertions, deletions and replacements. Each
newly created sequence differs from its original in 6% of the nucleotides on av-
erage. This agrees with real cases, like the Alu family in the human genome,
where the sequences diverge by up to 12% from other elements in the fam-
ily [10]. The number of members in a family is called the family size.

The inserted repeat families were of size 2, 4, 16, and 256. In our tests, an
artificial chromosome can have either 0 or 2 families of each size. All possible
combinations were used, giving a total of 15 chromosome configurations. For
each configuration we created 15 different chromosomes and read sets with 0.25,
0.5, 0.75, and 1 time coverage, simulating partially finished sequencing projects.
The artificially created reads have average length of 250 base pairs.
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Table 1. Summary of the experiments with artificial data described in Section 4.1.
Each row corresponds to one of our 15 data sets. On the left we see the average number
of different components containing sequences of the same family. In the middle are the
average numbers of different families found in a single component. On the right we see
the percentage of inserted families which could be found in the graph after eliminating
long nodes.

Components per Family Families per Component Discovered Families (%)
25 50 75 100 25 50 75 100 25 50 75 100

6.33 5.57 4.41 5.68 1.00 1.00 1.00 1.00 20 40 70 73
4.50 3.50 4.33 4.70 1.00 1.00 1.00 1.00 63 97 97 100
5.26 4.78 4.82 4.32 1.00 1.00 1.00 1.00 43 70 85 92
4.27 4.37 4.18 4.42 1.00 1.00 1.00 1.00 100 100 100 100
3.93 4.48 4.31 4.12 1.00 1.00 1.00 1.02 58 78 87 93
4.41 4.01 4.31 4.47 1.00 1.01 1.00 1.02 83 95 100 100
4.31 4.83 4.25 4.20 1.01 1.01 1.02 1.05 64 82 91 94
4.08 3.80 3.89 4.44 1.93 1.93 1.93 1.93 100 100 100 100
4.68 4.56 3.98 4.51 1.78 1.93 1.61 1.51 65 70 80 90
4.38 4.93 4.45 4.72 1.78 1.50 1.58 1.91 85 100 100 100
4.88 4.36 4.28 4.14 1.64 1.55 1.40 1.48 60 77 89 96
4.83 4.69 5.08 4.23 2.18 2.89 2.98 3.31 100 100 100 100
4.48 4.89 4.81 4.50 2.29 2.19 2.36 2.28 72 89 90 98
4.28 4.62 4.63 4.24 1.66 1.82 2.35 2.50 89 98 99 100
4.26 4.51 4.91 4.98 1.60 1.66 1.78 1.87 68 93 97 98

The sets of reads were given as input to the connected component based repeat
family detector, resulting in a collection of connected components. Because we
know which sequences correspond to family members, we were able to associate
each resulting graph component to the families contained in it. The result of this
association is shown in Table 1.

In the ideal case, we would find each family contained in a single connected
component. Table 1 shows a different reality. In the left column (“Components
per Family”), we see that families are usually split into more than three com-
ponents. However, each component usually contains sequences of a single fam-
ily, which is shown by the column “Families per Component”. This shows that
although the families are split, they are at least not so mixed up that their
separation is impossible.

In the rightmost column (“Discovered Families (%)”) we see how much of
the inserted families could be detected by the method. The fact that we were
never able to identify all the families in the odd rows is expected. These are
cases where the chromosomes have families of size two. In such cases, depending
on the underlying sequence graph dimension used, it can happen that the two
family sequences do not share any tuple, or the number of shared tuples is so
small that they end up being discarded as small components. In these cases, the
combine operation plays an important role, as the next section shows.

4.2 Combine

In order to evaluate our more advanced algorithm, we created a dataset with real
bacterial genome sequences and their known insertion sequences. The bacterial
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Table 2. Percent of known insertion sequence families found in incompletely sequenced
bacterial genomes at different coverages. Bacteria marked with a ‘∗’ symbol do not have
any family with a single member. Numbers marked in bold indicate for which of the
two combine factors more families were identified, on average.

Combine Factor (t) 1.0 3.0
Sequencing Coverage (%) 25 50 75 100 25 50 75 100

Bacillus anthracis (plasmid PX01)∗ 0 7 0 40 17 58 92 100
Bifidobacterium longum 14 54 63 64 39 68 81 83
Burkholderia xenovorans 44 67 73 78 50 67 75 81
Colwellia psychrerythraea∗ 40 100 100 100 83 100 100 100
Desulfitobacterium hafniense∗ 67 80 97 100 71 96 100 100
Desulfovibrio desulfuricans∗ 33 47 93 100 33 75 92 100
Escherichia coli 17 50 62 70 44 65 85 92
Geobacter uraniumreducens 32 62 67 70 46 68 75 80
Gloeobacter violaceus 30 70 60 83 54 75 88 100
Granulibacter bethesdensis∗ 7 7 40 53 25 33 42 75
Haloarcula marismortui 3 12 22 28 13 25 50 63
Halobacterium sp-plasmid pNRC100 37 57 56 61 37 42 53 57
Legionella pneumophila-Paris 0 13 20 7 8 0 0 17
Legionella pneumophila-Philadelphia 1 27 63 93 93 54 63 63 92
Methanosarcina acetivorans 88 98 98 100 93 100 99 100
Methylococcus capsulatus 22 65 77 83 44 71 90 96
Nitrosospira multiformis∗ 53 93 100 100 92 100 100 100
Photobacterium profundum 87 100 100 100 100 100 100 100
Pseudomonas syringae 92 99 100 100 97 100 100 100
Pyrococcus furiosus 47 58 71 73 50 72 81 89
Ralstonia solanacearum 38 60 75 89 53 78 93 95
Rhodopirellula baltica 82 98 100 100 97 100 100 100
Roseobacter denitrificans∗ 40 80 87 100 42 92 100 92
Salinibacter ruber∗ 100 100 100 100 100 100 100 100
Shewanella oneidensis 10 26 18 23 18 38 15 41
Sulfolobus solfataricus 94 99 100 99 94 100 100 100

chromosomes were obtained from the NCBI Website1, while the correspond-
ing insertion sequences were obtained from the insertion sequence database IS
Finder2. We created 15 read sets covering 25, 75, 50, and 100 percent of the
genome on average. Each of the read sets was used twice as input for the com-
bine method: once with combine scale factor t = 1.0, and a second time with
scale factor t = 3.0. Again we associated the resulting connected components to
the repeat families found in each of them.

In Table 2 we see the percentages of the known insertion sequence families
which could be detected by the method at different coverages. The biggest per-
centage is shown in bold. We see that, by allowing more divergent nodes to
combine, we are not only able to identify more families, but also to identify
them at lower coverage.

5 Conclusion

We presented two methods for detecting repeat families in incompletely se-
quenced genomes. The methods are based on operations on the set of nodes
and edges of a sequence graph, a compacted variant of a sparse de Bruijn graph.

1 NCBI: http://www.ncbi.nlm.nih.gov
2 IS Finder: http://www-is.biotoul.fr/is.html

http://www.ncbi.nlm.nih.gov
http://www-is.biotoul.fr/is.html
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The first method was based on the deletion of long nodes corresponding to
non-repetitive genome portions. Based on experiments involving artificially cre-
ated data, we showed that the use of this method for family detection is possible,
although the families may be split in a few components in the resulting graph.
We also noticed that families appearing in small copies are in many cases not
detected by the method.

Another node operation was presented in order to combine similar, but not
identical, nodes of different members in a family. This operation was applied
before the deletion of long nodes, in order to avoid the splitting of family com-
ponents. Although the combination of nodes leads to a reduction in the number
of components per families (data not shown), the main advantage of this oper-
ation is better observed in experiments involving real bacterial genomes, where
the node combination leads to the detection of only weakly represented families.

The main obstacle for using these methods in practical applications is the
splitting of repeat families in separated components. This is for us the main
problem to be tackled before applying the method in genomes of higher com-
plexity, like eukaryotes.
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Abstract. Horizontal Gene Transfer (HGT) is the event of transferring
genetic material from one lineage in the evolutionary tree to a different
lineage. HGT plays a major role in bacterial genome diversification and is a
significant mechanism by which bacteria develop resistance to antibiotics.
Although the prevailing assumption is of complete HGT, cases of partial
HGT (which are also named chimeric HGT) where only part of a gene is
horizontally transferred, have also been reported, albeit less frequently.

In this work we suggest a new probabilistic model for analyzing and
modeling phylogenetic networks, the NET-HMM. This new model cap-
tures the biologically realistic assumption that neighboring sites of DNA
or amino acid sequences are not independent, which increases the accu-
racy of the inference. The model describes the phylogenetic network as
a Hidden Markov Model (HMM), where each hidden state is related to
one of the network’s trees. One of the advantages of the NET-HMM is
its ability to infer partial HGT as well as complete HGT. We describe
the properties of the NET-HMM, devise efficient algorithms for solving
a set of problems related to it, and implement them in software. We also
provide a novel complementary significance test for evaluating the fitness
of a model (NET-HMM) to a given data set.

Using NET-HMM we are able to answer interesting biological ques-
tions, such as inferring the length of partial HGT’s and the affected
nucleotides in the genomic sequences, as well as inferring the exact lo-
cation of HGT events along the tree branches. These advantages are
demonstrated through the analysis of synthetical inputs and two differ-
ent biological inputs.

1 Introduction

Eukaryotes evolve largely through vertical lineal descent in a tree-like manner.
However, in the presence of HGT the right model of evolution is not a tree but
is rather a phylogenetic network, which is a directed acyclic graph obtained by
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positing a set of edges between pairs of the branches of an organismal tree to
model the horizontal transfer of genetic material [16]. In the case of a complete
HGT the assumption is that a single tree (one of the trees induced by the
network) describes the evolution of a gene, while in the case of a chimeric HGT
more than one tree is needed (i.e. different parts of a gene evolve according to
different trees).

HGT (partial or complete) is very common among Bacteria and Archaea
[6,8,5], but evidence of HGT (partial or complete) between Eukaryotes are also
accumulating [2,26]. A large body of work has been introduced in recent years to
address phylogenetic network reconstruction and evaluation. Methods for dealing
with this problem include a variety of approaches: Splits Networks (see e.g. [14])
which are graphical models that capture incompatibilities in the data due to
various factors, not necessarily HGT or hybrid speciation; Maximum Parsimony
(MP) [12,16,17] that are based on Occam’s Razor approach; distance methods,
that try to fit a distance matrix to a network [4] or use the minimum evolution
criterion [3], and graph theoretical approaches that try to fit a gene tree to a
species tree [1,10,23,11].

One of the most accurate and commonly used criteria for reconstructing phy-
logenetic trees is Maximum Likelihood (ML) [9]. Roughly speaking, this criterion
considers aphylogenetic tree fromaprobabilistic perspectiveasa generativemodel,
and seeks the model (i.e., tree) that maximizes the likelihood of observing the given
input set of sequences at the leaves of the tree.Likelihood in the general network set-
ting has been investigated in the past in various studies.VonHaeseler andChurchill
[29] provided a framework for evaluating likelihood on networks and subsequently
[28] provided an approach to assess this likelihood. These works consider a network
as an arbitrary set of splits and do not correspond to a specific biological process.
Likelihood on networks has also been considered in the setting of recombination
networks (see e.g. [13]). These methods are tailored to identify breakpoints along
the given sequences.However, their underlyingmodel, the biological questions they
investigate, and the algorithmic approaches they pursue are different from ours as
they model a different biological process.

Recently, Jin et al. performed an initial step toward developing an HGT-
oriented likelihood based model for evolutionary networks [16]. This work demon-
strated the potential of using ML for inferring evolutionary networks. The main
advantage of that work is its simplistic underlying model, that enables efficient
implementation. Another related work is the study of Siepel and Haussler [27]
who suggested a model that combines a phylogenetic tree along with a HMM
and used it for aligning full genomes. Our work was inspired by these two works.
However, while the main goal in [16] was to infer complete HGT events, here we
focus on analyzing chimeric HGT events by adopting a more biologically relevant
model for this task, the NET-HMM model.

The NET-HMM models a phylogenetic network by a Hidden Markov Model
(HMM), where each of the network’s trees corresponds to a state of the HMM
(see figure 1); i.e. the emission probability in each state is according to its cor-
responding tree.
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Fig. 1. Simple example of the NET-HMM model. (A) A phylogenetic network, with
a single HGT from X to Y . (B) The HMM for the network: I denotes the initial
state, all the other states are related to the networks’ trees. The state S1 is related
to the underlining organismal tree. The state S2 is related to the tree of realizing the
horizontal transfer edge. We assume Pi,i > Pi,j , i. e. in each position the probability
to stay in the same state/tree is higher than the probability of transition to other tree.

The model is supported by biological facts that (i) adjacent sites are not
independent with respect to HGT, (ii) events of HGT are relatively rare. In the
view of the NET-HMM model, events such as chimeric HGT [22] are described
as a transition between states (trees) of the HMM. NET-HMM also reconstructs
the exact HGT location on the tree edges, a task that methods such as MP or
distance based methods [17,4] can not accomplish.

By applying the NET-HMM on synthetical data, we show very significant
improvements over the i.i.d. model [16] in the ability to locate chimeric events
and locations along tree edges. Results on biological data point out significant
biological phenomena such as amelioration [15,25], chimeric HGT events, and
occurrence of very recent HGT events. Applying the NET-HMM to data that
were analyzed in the past suggest an excess of HGT inference. These findings
suggest a further scrutiny.

In the statistical-algorithmic realm, we propose a novel algorithm, EM NET-
HMM, that interweaves into the conventional EM algorithms a step of hill
climbing to maximize emission probabilities, rendering a non trivial algorithmic
approach. We also devised a novel permutation test to measure the fitness of a
NET-HMM to a given dataset.

2 Methods

2.1 Preliminaries and Definitions

Let T = (V, E) be a tree, where V and E are the tree nodes and tree edges,
respectively, and let F (T ) denote its leaf set and I(T ) its internal nodes. Further,
let χ be a set of taxa (species). Then, T is a phylogenetic tree over χ if there is a
bijection between χ and F (T ). A tree T is said to be rooted if the set of edges E is
directed and there is a single distinguished internal vertex r with in-degree 0. Let
Σ denote the set of states (e.g. for DNA, |Σ| = 4). Then with each edge e ∈ E
we associate a substitution probability pe indicating the probability of observing
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different states at the endpoints of e. For a wide variety of evolutionary models
there is an invertible transformation from the pe to edge length qe s.t. qe’s are
additive - applying the inverse transformation on the sum qπ =

∑
e∈π qe of edge

lengths along a path π yields the probability pπ of observing different states
at the endpoints of π. Therefore, under the mapping q : E → R of lengths,
T = (V, E,q) is a weighted tree (we omit q when it is clear from the context).
The edge length and additivity are crucial for our formulation as is explained in
the sequel.

In this work we consider the Jukes-Cantor (JC) model of sequence evolution
[21]. However, all the results here can be generalized to other models of sequence
evolution. Under JC, the length-substitution relationship is as follows: pe =
3
4 (1 − e−4/3qe) and qe = − 3

4 ln(1 − 4
3pe).

For a given set of input sequences S, the i-th site, Si, is the set of states at the
i-th position for every sequence in S 1. Under the ML criterion, a phylogenetic
tree is viewed as a probabilistic model from which input sites are assumed to
be sampled. The probability of obtaining a site Si given a tree T , L(Si|T ), is
defined as [9]:

L(Si|T ) =
∑

a∈Σ|I(T)|

∏

e∈E(T )

m(pe, Si, a) , (1)

where a ranges over all combinations of assigning states to the I(T ) internal
nodes of T . Each term m(pe, Si, a) is either pe/(|Σ| − 1) or (1 − pe), depending
on whether, under a, the two endpoints of e are assigned different or the same
states respectively.

A phylogenetic network N = N(T ) = (V ′, E′) over the taxa set χ is derived
from a rooted weighted tree T = (V, E,q) by adding a set R of reticulation
edges to T , where each edge r ∈ R is added as follows: (1) split an edge e ∈ E
by adding a new node, ve, s.t. the lengths of the newly created edges sum to
the length of e; (2) split an edge e′ ∈ E by adding another new node, ve′ (again
by preserving lengths); (3) finally, add a directed reticulation edge r from ve

to ve′ . We add that the substitution probability (and hence the length) of r is
zero as these events are instantaneous in time. The mathematical implication of
the above is that it extends the partial order induced by T on V (see [19,18]).
This results in having no cycles in which tree edges are traversed along their
directionality and reticulation edges in either direction (see Figure 3 A.). A tree
T ′ is induced by N by removing all but one incoming edges to the newly added
nodes, and contracting degree-2 nodes (while summing the edge lengths). We
denote by T (N) the set of trees induced by N (see Figure 3 A.).

2.2 From a Network to a HMM

The i.i.d Model. Under the i.i.d model, each reticulation edge r has a prob-
ability denoting the corresponding event’s probability. Under this formulation,
every edge (including tree edges) is assigned an occurrence probability s.t. the
1 Can be viewed as the i-th column when the sequences are aligned.
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sum of occurrence probabilities of edges entering a node is 1. For a tree T , let
ET denote the set of (reticulation + tree) edges realized by (or giving rise to)
T , and let P (ET ) be the probability of observing ET (It can be seen that this is
the product of their individual probabilities).

Therefore, the likelihood of obtaining a site, Si, given a phylogenetic network,
N , is [16]: L(Si|N) =

∑
t∈T (N) P (Et) · L(Si|t). The likelihood of obtaining the

input sequences is L(S|N) =
∏

i L(Si|N). As different sites are modeled inde-
pendently, a weak signal at a certain site will cause the inference of an erroneous
tree at that site (a phenomenon we give more details on in the simulation sec-
tion). To overcome this shortcoming, we treat the sites as a Markovian process,
as we describe in the next subsection.

TheNET-HMM. TheNET-HMMisa tupleM = {N, H}whereN = (V ′, E′,q)
is a phylogenetic network, and H is a Hidden Markov Model (HMM). We do not
know the evolutionary history (a tree in T (N)) of every site in S, thus we assign a
hidden state for each site in S, and an initial state, I. The hidden states correspond
to the states of H and letΣH denote this set. Let Υ (h) denote the tree related to the
hidden state h (the initial state is not related to a tree, so h �= I). The meaning of
relating the state h of the i-th site to a state of the HMM is that this site evolves on
the tree Υ (h) ∈ T (N) ( i. e. the i-th column was emitted by the tree T ).

Let p(hi−1 → hi) denote the transition probability between state hi−1 and
state hi in the HMM. The likelihood of a NET-HMM model M when observing
a set S of n-long sequences, is defined as the probability of observing S evolving
on M which is the sum of probabilities of all length-n paths of states from ΣH .
Thus L(S|M) equals

∑

hn
1∈(ΣH)n

p(I → h1)
n∏

i=2

p(hi−1 → hi) · L(Si|Υ (hi),q) (2)

where hn
1 is a sequence of n states (and ∀ihi ∈ ΣH).

A different variant of the likelihood function scores a network by the proba-
bility of the most likely path, ĥn

1 , in M . The latter is achieved by replacing the
sum by a maximum relation.

Our goal is to find the model (network topology, edge length, and transition
probabilities of the HMM) that maximizes the likelihood of the input sequences
(equation 2). By using an HMM we gain two important advantages: 1) We
gain dependencies among close sites, as in reality. 2) We indirectly infer the
probabilities of reticulation events, while avoiding the use of arbitrary parameters
for reticulation probability (as was assumed in [16]).

We emphasize three important constraints on the NET-HMM model; these
constraints are biologically motivated but also decrease the parameter space (and
thus reduce the running time), while improving the quality of the results:

1. The network induces both the topology and edge lengths of its trees (see
Figure 2).

2. Temporal constraints on the reticulation edges decrease the number of valid
networks (see Figure 3A.).
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Fig. 2. A simple example of a phylogenetic network under the likelihood setting, and
the set of induced trees. A. A phylogenetic network with one reticulation edge; each
edges length denotes the expected number of subsections along the edge. B. One of the
network’s trees that does not include the reticulation edge. C. One of the network’s
trees that includes the reticulation edge.

3. By imposing constraints on the transition probabilities of H , we can drasti-
cally reduce the exponential number of paths. We add that there is a positive
transition probability from the initial state to each of the other states (see
Figure 3 B.).

Given a set of sequences associated with the tree leaves, we distinguish be-
tween three major versions of the problem, tiny, small, and large that are defined
as follows:

1. The tiny version: Input: the network topology along with its edge lengths
and transition probabilities between states in the induced HMM. Output:
The most likely path in the HMM.

2. The small version: Input: The network topology. Output: The ML network
edge probabilities and ML transition probabilities of the induced HMM.

3. The large version: Input: The initial organismal tree. Output: The ML
NET-HMM (complete network+HMM).

The specific version of the problem should be employed depending on the
given input. When only an organismal tree and a set of sequences, suspected of
having undergone HGT, are given, the large problem is chosen. When some prior
information about the topology of the network (i.e. a set of reticulation edges
corresponding to the organismal tree) is given and we want to know the exact
location of the reticulation edges (the “split” points) and the positions of the
events along the sequences, we should solve the small problem. The tiny problem
finds the positions of the events along the input sequences (a partial task of the
small problem) by inferring the evolutionary history of each site (position) of
the input sequences.
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Fig. 3. Constraints on the structure of the NET-HMM. A. Example of a network that
does not satisfy the temporal constraints. By the tree topology, x occurs before y′ and
y occurs before x′. By the reticulation edges, x and x′ occur at the same time and
y and y′ occurs in the same time. Thus, y′ occur before x′ and x′ occurs before y′ -
a contradiction. B. A simple example of the implementation of the assumption that
HGTs are rare events. Suppose the phylogenetic network includes 2 edges. We name
each of the network’s four states/trees by its code (I denotes the initial state). The
figure shows only the transitions with non-zero probabilities, i. e. transitions between
trees (states) with hamming distance ≤ 1.

2.3 Algorithms

The Tiny Problem - Finding the Most Likely Path. Let L(Si
1|h′, M)

denote the likelihood of observing the first i positions of the sequences under
M restricted that the i’th state is h′ ∈ H . First we observe that L(S|M) =∑

h′∈H L(Sn
1 |h′, M). Moreover, L(Si

1|h′, M) equals

∑

h′′∈ΣH

L(Si−1
1 |h′′, M) · p(h′′ → h′) · L(Si|Υ (h′),q). (3)

Equation (3) is solved by the dynamic programming forward and backward
algorithms [7]. The maximization variant is solved similarly by the Viterbi dy-
namic programming algorithm.

A related question is to infer the most likely state (tree), ĥi, at a certain
site, i. For this problem we used the forward and backward algorithms and
calculate: p(S, hi = k) = p(Si

1, hi = k) · p(Sn
i+1|hi = k). By the forward and

backward algorithms we can calculate p(S). Thus we get the results p(hi =
k|S) = p(S,hi=k)

p(S) .

The Small Problem - Learning a Given Model. Given the network’s
topology (and hence the induced HMM) we use our extended EM algorithm,
EM NET-HMM (depicted in Figure 4), for estimating the edge lengths and edge
probabilities of the network as well as the state transition probabilities in the
HMM.
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EM NET-HMM:
1. Start with initial random edge lengths and transition probabilities.
2. Perform until convergence:
a. Given the edge lengths (that induce an emitting probability for all states);
optimize the transitions probabilities by BW algorithm.
b. Given the transition probabilities of the HMM, optimize the edge probabili-
ties (i. e. find edges that maximize the cost function that appear in equation 2)
by hill climbing.

Fig. 4. The main algorithm, EM NET-HMM

Observation 1. The algorithm EM NET-HMM terminates and converges to a
local ML point.

The Large Problem - Expanding a Given Model. Recall that the task in
the large problem is to add reticulation edges s.t. the likelihood of the model is
maximized. Literally, solving this problem boils down to iteratively adding edges
to a given tree/network. By the fact that additional edges never decrease the
likelihood of the model, some stopping criterion is required. One possibility is to
observe the improvement in the likelihood score and stop when the improvement
is insignificant (this approach was used in [16,17]). We however used a more
rigorous approach as described in the next sub section.

2.4 Network Significance

Recall that the improvement of the NET-HMM model over the iid (see Section 3
for experimental results) was achieved by the coupling of neighboring sites. This
is reflected by the transition probabilities of the HMM. Therefore in order to
evaluate the significance of a given model (network+HMM) M ′ WRT the data
order within the given input S′, we devised the following test that resembles the
conventional permutation test in statistics: For a given random sampling S0 of
the sites of the input, let L(S0|M ′) be the likelihood of M ′ WRT S0 (i.e. the
solution of the tiny problem). For a given big enough set of such samples, we
obtain a probability distribution of the likelihood of M ′. Given that distribution
we can compute the empirical p-value of M ′ WRT S′. In our setting, we run
this test after each time a model is built, that is after the application of the
small problem. We note that another significance test could be obtained by
randomizing over the space of networks, however, due to the small size of this
space and the computational complexity of calculating this distribution, we used
only the first test.

We used this approach to determine stopping criterion. We stopped the al-
gorithm of iteratively adding HGT edges when either the likelihood did not
increase or the p-value increased.



362 S. Snir and T. Tuller

3 Experimental Results

3.1 Synthetical Inputs

We first implemented our algorithms on synthetical data. In order to test the
NET-HMM’s accuracy we tried to solve the small problem on simulated data
where we know the “true” model. We generated 20 synthetical phylogenetic
networks, sampled them, and used these samples as inputs to our methods.

In the first test our aim was to check how well the NET-HMM reconstructs
the set of events (correct positions along the correct sequences) occurred in the
network. This is equivalent to finding the correct path between the HMM states
(trees). We sampled a segment (a consecutive set of sites) from each of the trees in
the network and concatenated them together into a basic concatenation block.
We defined an error rate in the reconstruction of the most likely path as the
fraction of sites where the NET-HMM inferred a wrong tree. The experiments
were conducted for various HGT segment lengths and for various number of
replications of the basic concatenation block. The results are shown in Figure 5.

In Figure 5.A. it can be appreciated that the NET-HMM was able to recon-
struct each of the segments fairly accurately and significantly better than the
i.i.d model. It demonstrates that segments of length 50 are enough for generating
a surprisingly good reconstruction of the true path (error rate between 0.15 and
0.19), and segments of length 500 will give a very good reconstruction (error
rate less than 0.01). The results also show that the method is independent of
the number of replications of the basic concatenation block. On the other hand,
as expected the error rate of the i.i.d model was around 0.8 irrespective of the
number of replications and segment lengths. Figures 5.B and 5.C show the out-
put of two typical runs of EM NET-HMM and the i.i.d. model compared with
the true path, for segment lengths 50 and 500 respectively. The advantage of
EM NET-HMM over the i.i.d. model is very clear and outstanding.

In our second test, we checked the ability to infer the correct HGTs by the
NET-HMM (i.e. the big problem). When checking synthetic datasets of moderate
sequence length (above 500 sites) and tree edges of significant length (so the
correct HGT edge location is crucial) usually the improvement in the likelihood
of the true HGT edges was much larger than arbitrary ones, and the NET-HMM
successfully identified the correct HGTs.

3.2 Biological Inputs

As indicated above, the main strength of our method is its accuracy, making
it appropriate for further analysis of results obtained or hypothesized by other
methods. We believe this is the most practical way of using our model since it
substantially decreases the number of learned parameters and hence the statis-
tical and the computational complexity of the problem.

Hence, we solved a restricted version of the small problem where the task is to
infer the exact position of the reticulation edges along the tree branches and the
most likely tree at each site. The organismal tree (topology and edge lengths)
was inferred using ML on various sets of genes and was taken as constant.
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Fig. 5. The performances of the NET-HMM on synthetic inputs (a network with 8
leaves and two reticulation edges). A. Reconstructing the tree in each site: Error rate
for different segment lengths. B. Segment length 50: The inferred tree in each site by
NET-HMM vs the i.i.d model. C. Segment length 500: The inferred tree in each site
by NET-HMM vs the i.i.d model.
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Fig. 6. Phylogenetic network of the ribosomal protein gene rps11 of a group of 5
flowering plants. A. The inferred positions of the HGTs. B The inferred most likely
path (the most likely reticulation edge in each position of the sequence).

In order to adjust the tree’s branch lengths to the evolutionary rate of our set
of genes/proteins, we used one scaling factor for all the branches that was esti-
mated together with the other network parameters (similar idea to the propor-
tional branch lengths approach [24]). The set of the reticulation edges (without
their positions along the tree branches) was inferred by the fast algorithm that
is based on the MP criterion [17].

The Ribosomal Protein Gene rps11 of Flowering Plants. We analyzed
the ribosomal protein gene rps11 of a group of 5 flowering plants which was first
analyzed by Bergthorsson et al. [2] who suggested that this dataset underwent
chimeric HGTs. This dataset consists of 5 DNA sequences. The species tree
was reconstructed based on various sources, including the work of [20], the edge
lengths were computed by the gene atp1 (1, 254 nucleotides) (see figure 6).
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Fig. 7. Phylogenetic network of the ribosomal protein rpl12e of a group of 8 Archaeal
organisms. The position of the HGTs (hA,1, hA,2, hB,1, hB,2, hC,1, hC,2 ) for each of
the eight most likely solutions are plotted in the table beside.

The permutation p-value of the results is 0.02, and the plot of our EM NET-
HMM supports the hypothesis of Bergthorsson et al. as the resulted ML paths
consist of two different non-organismal trees (see figure 6). The tree that consists
of one of the reticulation edges appear in most of the sites of the path but towards
the end of the path the second tree (consisting of the second reticulation edge)
appears (see figure 6).

Ribosomal Protein rpl12e of a Group of Archaeal Organisms. Next we
analyzed the ribosomal protein rpl12e of a group of 8 Archaeal organisms, which
was analyzed by Matte-Tailliez et al. [22]. This dataset consists of 14 aligned
amino acid sequences, each of length 89 sites. We used the same organismal
tree used by the authors [22]. In their work, they suggest that ribosomal pro-
tein rpl12e has different evolution history from the organismal evolutionary tree
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(probably due to HGT events). By using MP Jin et al. [17] indeed found three
HGTs (see figure 7), that can explain the difference between the two trees.

The inferred positions of the HGTs are depicted in figure 7. All the ML
solutions have permutation p-values around 0.02 (due to almost identical log
likelihoods). The distances of events B and C from the leaves are very small
(see hB,1, hB,2, hC,1, hC,2 in figure 7), suggesting that these two HGT events
occurred fairly recently (in terms of the evolutionary time scale).

Amelioration [15,25] is a process by which a gene that was transferred hori-
zontally acquires features (e.g. GC content, the percentage of nitrogenous bases
on a DNA molecule which are either guanine or cytosine) similar to its new en-
vironment. This is particularly true in recent events as this process diminishes
in time. The lengths along the branches of a phylogenetic network are related to
the rate of mutation and time span [21]. The existence of two paths along a tree
with the same time span but different lengths suggests a variation in mutation
rate. By definition, the time span between the two ends of a reticulation edge
and their corresponding leaves of the phylognetic network is identical. Interest-
ingly, our results show hB,1 < hB,2 and hC,1 < hC,2

2. This fact suggests that
after horizontal transfer events, genes have undergone an accelerated evolution
or adaptation on the amino acid (protein) levels and not only on the nucleotides
(gene) levels. This reasonable idea is new in this context.

4 Conclusions

In this work we have described a novel model for analyzing phylogenetic net-
works. We show that our model, along with its implementation, has advantages
over other methods and it is complementary to the other methods in the field,
by utilizing and extracting more information encompassed in the data. We also
devised a novel test for the statistical significance of a hypothesis (network) un-
der that model. The main strength of this model is its accuracy, however at the
cost of increased complexity. The latter can be overcome by incorporating prior
knowledge obtained by simple, less accurate models. We have devised an infer-
ence method for that model and have shown its performance on simulated data
and subsequently applied it to real biological data that was analyzed previously
by other methods. Using it, we are able to answer real biological questions such
as existence of partial HGT, differences in the rate of mutation among various
lineages, distribution of HGT over time and alike. On the computational side,
we devised a novel algorithm, EM NET-HMM that employs an EM algorithm
in the transition probability space combined with a hill climbing step in the
network parameter space.

As a future work, it would be desirable to develop more efficient heuristics
for optimizing our computations, and to implement our method on larger sets
of organisms. By implementing the NET-HMM on large datasets we intend to

2 Precisely, averaging over all ML solutions, hB,1 = 0.003, hB,2 = 0.0053, hC,1 =
0.0056, hC,2 = 0.0063.



Novel Phylogenetic Network Inference by Combining Maximum Likelihood 367

answer the basic question of determining the length distribution of HGTs or
partial HGTs.
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Abstract. The HP model is one of the most popular discretized models
for the protein folding problem, i.e., for computationally predicting the
three-dimensional structure of a protein from its amino acid sequence.
This model considers the interactions between hydrophobic amino acids
to be the driving force in the folding process. Thus, it distinguishes be-
tween polar and hydrophobic amino acids only and asks for an embedding
of the amino acid sequence into a rectangular grid lattice which maxi-
mizes the number of neighboring pairs (contacts) of hydrophobic amino
acids in the lattice.

In this paper, we consider an HP-like model which uses a more appro-
priate grid structure, namely the 2D triangular grid and the face-centered
cubic lattice in 3D. We consider a local-search approach for finding an
optimal embedding. For defining the local-search neighborhood, we de-
sign a move set, the so-called pull moves, and prove its reversibility and
completeness. We then use these moves for a tabu search algorithm which
is experimentally shown to lead into optimum energy configurations and
improve the current best results for several sequences in 2D and 3D.

1 Introduction

One of the core problems in today’s bioinformatics is the question of how pro-
teins fold and whether we can efficiently predict their structure. Proteins regulate
almost all cellular functions in an organism. They are built as linear chains of
amino acids. These chains fold in three-dimensional space. This 3D structure,
also referred to as tertiary structure, plays a key role in their function. According
to Anfinsen’s thermodynamic hypothesis, proteins fold into states of minimum
free energy and their tertiary structure can be predicted from the linear sequence
of amino acids [2]. In nature, proteins fold very rapidly, despite the enormous
number of possible configurations. This fact motivated Levinthal [12] to suggest
that the native protein state might have a higher energy value than the theoreti-
cal free-energy minimum, if the latter is not kinetically accessible; a phenomenon
that is referred to as Levinthal’s paradox and implies that a protein might be
able to avoid kinetic traps of local minima or quickly escape them. Therefore, an
almost greedy path to the native protein state exists [8]. The mechanism behind
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this paradox remains an open problem, which motivates many scientists to study
protein folding simulations.

In order to speed up simulations, a variety of coarse-grained models have been
introduced. Even in one of the most simplified models, namely the HP model [6],
protein folding has been shown to be NP-complete [5]. In this original HP model,
the amino acid chain of a protein is embedded into a two- or three-dimensional
rectangular grid lattice. The quality of an embedding is measured by the num-
ber of neighboring pairs (contacts) of hydrophobic amino acids in the lattice.
The problem is shown NP-hard for HP-like models into generalized lattices [10].
These hardness results motivated a study of approximation algorithms for the
HP model [9]. Nevertheless, the approximation ratio is far from giving exact
prediction and consequently a variety of heuristic methods have been proposed,
such as genetic algorithms [18], Tabu search [13], Simulated Annealing [17].

Most approaches employ the HP model in rectangular lattices, which captures
the computational properties of the problem but has the drawback of allowing
interactions only between amino acids of opposite parity in the chain. One pos-
sibility for overcoming this problem is by using triangular grid lattices. The 3D
equivalent of the 2D triangular lattice is the face-centered cubic lattice (FCC).
Another strong motivation behind studying the FCC is the fact that its geom-
etry has been rigorously shown to be the closest packing geometry for identical
spheres [16], which concludes an old conjecture by Kepler. Although some other
geometries might also exhibit the property of closest packing, the authors in
[4] observed that in native foldings, the neighboring positions of amino acids
closely approximate those of a distorted FCC lattice. Linear-time approxima-
tion algorithms [1] and various heuristic approaches have been developed for the
triangular models as well. The latter include genetic algorithms [11] and various
Monte Carlo search methods [19].

Especially in the context of local search methods, it is important to employ
an efficient move set (neighbourhood function), since it determines the overall
performance. The pull move set, originally introduced by Lesh et al. [13] for
rectangular lattices, has been proven to be very efficient in the HP model under
a variety of local search methods [13,17]. In [13], also the completeness and
reversibility of the pull move set were shown for rectangular grid lattices; these
are essential properties to guarantee reachability of the global minimum.

In this paper, we first formally introduce pull moves in the 2D triangular
lattice. Secondly, we extend them to the FCC lattice based on the fact that the
FCC lattice is isomorphic to a 3D extension of the triangular lattice. We also
formally prove the reversibility and completeness of pull moves in both the 2D
triangular and the FCC lattices. We then employ the set of pull moves in a tabu-
search strategy for protein folding simulation. Experimental results on several
benchmark problem instances show that the pull move set combined with the
tabu-search algorithm is able to lead into known optimum energy configurations.
Also tabu search gave improved results for several 2D and 3D benchmarks from
[14,15].



A Local Move Set for Protein Folding in Triangular Lattice Models 371

2 The 2D Triangular Lattice Model

2.1 The Local Move Set in the 2D Case

To define the neighbourhood for our local search algorithms, we introduce a set
of moves which allow us to transform a valid conformation into another. The
main idea can be described as follows. We choose a vertex from the chain such
that there exists a free position in the grid adjacent to both this vertex and
either its predecessor or successor in the chain and move it to this free position.
This might break the chain, so repairing the chain again also has to be part
of a move. This repairing is done via pulling the chain, i.e., the now free old
position of the moved vertex will be occupied by its successor (or predecessor),
again leaving a free position where the next vertex of the chain is moved, and
so on, until a valid conformation is reached. To describe these pull moves more
precisely, we need a few formal definitions, where our notation will closely follow
[3]. We start with a formal definition of the lattice that will serve as a spatial
model for the folding of the protein.

Definition 1. The two-dimensional triangular grid lattice is the infinite graph
L2D = (V,E) with vertex set V = (

√
3 · Z × Z) ∪ ((

√
3 · Z +

√
3

2 ) × (Z + 1
2 )) and

edge set E = {{x, x′} | x, x′ ∈ V, |x−x′|2 = 1}, where | · |2 denotes the Euclidean
norm.

As seen in Figure 1, a single vertex in the lattice can have exactly 6 neighbours.
Note that, for simplicity, we defined the lattice as an infinite graph although we
will only need a finite subgraph of it for each embedding of a protein.

Fig. 1. An example of a conformation for string p = p1, . . . , p10 = 0100101111

We will now define the valid embeddings of a protein into this lattice according
to our HP-like model. As usual in the HP model, we describe a protein as a string
over the alphabet {0, 1}, where 0 represents a polar (hydrophilic) amino acid
and 1 describes a hydrophobic amino acid. Intuitively, the embedding maps the
symbols of the string injectively onto a subset of the vertices of the lattice in such
a way that adjacent symbols in the string are also adjacent in the embedding. In
other words, the embedding can be described as a self-avoiding walk along the
grid edges. This embedding, called a conformation of the string, can be defined
formally as follows.
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Definition 2. Let p = p1 . . . pm be a string of length m over the alphabet {0, 1}.
A conformation of p in L2D is an injective function φ : {1, . . . ,m} → V from the
positions of the string to the vertices of the lattice that assigns adjacent positions
in p to adjacent vertices in L2D, i.e., {φ(i), φ(i+ 1)} ∈ E for all 1 ≤ i ≤ m− 1.
These edges {φ(i), φ(i+ 1)} ∈ E for 1 ≤ i ≤ m− 1 are called binding edges.

An edge {x, x′} of L2D is called a contact edge, if it is not a binding edge and
there exist i, j ∈ {1, . . . ,m} such that φ(i) = x, φ(j) = x′, and pi = pj = 1 (see
Figure 1).

The protein folding problem in the HP model on the two-dimensional triangular
grid lattice L2D is now to find a conformation of a given string in the lattice L2D

with a maximum number of contact edges. Each contact edge contributes −1 to
the energy. A special kind of local structure in a conformation are loops which
consist of two consecutive binding edges forming a 60◦ angle (e.g., in Figure 1
the binding edges between vertices 8, 9 and 10 form a loop). We are now ready
to formally define moves on conformations.

Definition 3. Let C(p) denote the set of all conformations of a string p. A move
on C(p) is a pair μ = (φ, ψ) of conformations. We say that μ transforms the
conformation φ into the conformation ψ.

This notion of a move is very general. For our local search algorithms we want
to consider only a special class of moves, so-called pull moves, defined as follows.

Definition 4. Let p = p1 . . . pn be a string over {0, 1}, let φ and ψ be two
conformations of p in L2D. We say that φ is transformed into ψ by a forward
pull move if the following conditions hold:

(a1) There exists an index i ∈ {1, . . . , n− 1} and a vertex v ∈ V (L2D) which is
empty according to φ and adjacent to both φ(i) and φ(i+ 1).

(b1) ψ(i) = v.
(c1) If φ(i−1) is also adjacent to v, then ψ(j) = φ(j) for all j �= i. Otherwise, let

k be the maximum index from {1, . . . , i−2} such that edges {φ(k), φ(k+1)}
and {φ(k + 1), φ(k + 2)} form a loop. If no such index exists, let k = 0.
Then ψ(j) = φ(j) for all j ∈ {1, . . . , k}∪{i+1, . . . , n} and ψ(j) = φ(j+1)
for j ∈ {k + 1, . . . , i− 1}.

We say that φ is transformed into ψ by a front-end pull move if the following
conditions hold:

(a2) There exists a vertex v ∈ V (L2D) which is empty according to φ and adja-
cent to φ(1), but not to φ(2).

(b2) ψ(1) = v.
(c2) Let k be the minimum index from {3, . . . , n} such that the edges {φ(k −

2), φ(k − 1)} and {φ(k − 1), φ(k)} form a loop. If no such index exists, let
k = n+ 1. Then ψ(j) = φ(j) for all j ∈ {k, . . . , n} and ψ(j) = φ(j − 1) for
j ∈ {2, . . . , k − 1}.
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Backward and back-end pull moves can be defined in a similar fashion. A
move is called a pull move if it is either a forward pull move, a backward
pull move, a front-end pull move or a back-end pull move.

An example of a pull move is shown in Figure 2. In local search, we want to
employ a neighbourhood function that is complete. In other words, we want to
ensure that every possible conformation is reachable from any other by a finite
sequence of moves. Thus, our next goal is to show that our set of pull moves is
complete. We start with a formal definition of completeness.

Fig. 2. An example of a forward pull move: Case 2a with n = 10, i = 5

Definition 5. Let p be a string over {0, 1} and let C(p) be the set of conforma-
tions of p on L2D. A set M of moves on C(p) is called complete if, for every two
conformations φ and ψ from C(p), there exists a sequence μ1 = (φ1, ψ1), . . . , μk =
(φk, ψk) of moves from M such that φ = φ1, ψ = ψk and ψj = φj+1 for all
1 ≤ j ≤ k − 1.

To prove the completeness of the set of pull moves, we will first show reversibility,
i.e., for each pull move transforming φ into ψ, we will exhibit a sequence of pull
moves transforming ψ into φ. In a second step, we will show that an arbitrary
conformation can be transformed into a straight line in L2D using a sequence of
pull moves. These two results together immediately imply the completeness of
the pull move set. Let us first give a formal definition of reversibility.

Definition 6. Let p be a string over {0, 1}, C(p) the set of conformations of p on
L2D and M a set of moves on C(p). A move μ = (φ, ψ) ∈ M is called reversible
with respect to M, if there exists a sequence μ1 = (φ1, ψ1), . . . , μk = (φk, ψk) of
moves from M such that ψ = φ1, φ = ψk and ψj = φj+1 for all 1 ≤ j ≤ k − 1.
The move set M is called reversible if every move μ ∈ M is reversible.

Lemma 1. The pull move set as described in Definition 4 is reversible.

Proof. Let Mpull(C(p)) denote the set of pull moves on C(p). In order to prove
reversibility, it is sufficient to show that any single pull move μ = (φ, ψ) ∈
Mpull(C(p)) is reversible. We will proceed by examining all possible cases with
respect to the number of vertices being relocated. Let μ be a forward pull move
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which starts by positioning φ(i) at vertex v ∈ L2D adjacent to both φ(i) and
φ(i+ 1), with i ∈ {1, . . . , n− 1}. Backward moves are symmetric, with the only
difference being that vertices are moved in opposite direction. Possible cases
then are Case 1, where only one vertex is relocated; Case 2, where two or more
vertices are relocated (see Figure 2) until the first loop is found ( Case 2a); or
if no such loop exists, μ continues to the end of the chain φ(1) (Case 2b).
Case 1: Move μ relocates only one vertex if φ(i−1) is also adjacent to vertex v,
i.e., μ consists of setting ψ(i) = v only. Therefore, vertex q, previously occupied
by φ(i), becomes free and is adjacent to both ψ(i− 1) and ψ(i). This allows us
to perform a backward move μ′ = (ψ, ψ′) that positions ψ′(i) = q (see Figure
3). Note that vertex q is adjacent to ψ(i+ 1) = φ(i+ 1) and therefore no other
vertices are relocated by μ′. Since q = φ(i) and no other vertices were relocated
by μ, it follows that ψ′(i) = φ(i), where i ∈ {1, . . . , n} and move μ is reversed.

Fig. 3. The case of move μ, relocating vertex φ(i)

Case 2: In Case 2a, the relocation of vertices stops because the loop formed
by edges {φ(k), φ(k + 1)} and {φ(k + 1), φ(k + 2)}, with k the maximum index
from {1, . . . , i− 2}, is encountered. We will try to reverse move μ by recreating
this particular loop. We will show that the last vertex to be relocated by a
reverse move is ψ(i), resulting in deletion of the loop formed by the edges {ψ(i−
1), ψ(i)} and {ψ(i), ψ(i+1)}. Note that the move μ will always create this loop.
Furthermore, in the new conformation ψ, there is a vertex q, previously occupied
by φ(k+1), but now empty and adjacent to vertices ψ(k) and ψ(k+1). Thus, a
backward move μ′ = (ψ, ψ′) can take place, starting by relocating ψ′(k+1) = q.
Let r be the minimum index from {k+3, . . . , n}, such that edges {ψ(r−2), ψ(r−
1)} and {ψ(r − 1), ψ(r)} form a loop. This gives the following:

r ∈ {k + 3, . . . , n}. (1)

We should note that such an index exists, because there is a loop between edges
{ψ(i − 1), ψ(i)} and {ψ(i), ψ(i + 1)} where i ∈ {1, . . . , n − 1}. Therefore index
r can be at most equal to i+ 1 and we get r ≤ i+ 1. By contradiction, we will
show that also r ≥ i + 1. Suppose that r < i + 1. This assumption along with
(1), gives

r ∈ {k + 3, . . . , i+ 2}. (2)

From (2) though, we get that a loop already existed in conformation φ between
k and i + 2, because no other loop was created as a result of move μ, apart
from the one formed by edges (ψ(i− 1),ψ(i)) and (ψ(i),ψ(i+ 1)). We also know
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that k is the maximum index, where move μ terminates. The existance of a loop
between edges {ψ(r − 2), ψ(r − 1)} and {ψ(r − 1), ψ(r)}, though, means that
k ≥ r, otherwise k would not be the maximum index. This is a contradiction,
because from (2) we have k ≤ r− 3 → k < r. Thus, r = i+ 1 or, in other words,
the last vertex to be moved by the backward move μ′ is ψ(i) and the move can
only take us back to conformation φ. Finally, in Case 2b one can show in a
similar way to Case 2a that the reverse move is a front-end pull move. ��

Before proceeding to the proof of completeness, we will introduce the notion of
boundaries of a conformation φ in C(p). Without loss of generality, we can fix
the orientation of our triangular grid L2D by picking two adjacent grid points
and then define a horizontal line as being any line of the grid parallel to the line
crossing the two points we chose. Moreover, these horizontal lines are parallel to
the x-axis, supposing that the grid is embedded on a cartesian coordinate system.
We refer to all other lines of the grid as non-horizontal and the orientated version
of L2D is denoted with L′

2D.

Definition 7. We define the left boundary of φ as the set of vertices L = {r ×
(
√

3 · Z)} ∪ {(r + 1
2 ) × (

√
3Z +

√
3

2 )}, where L ⊂ V (L′
2D) and r is the minimum

integer such that at least one edge of φ belongs to L.

Fig. 4. The left boundary L and the k times shift to the left

The boundary defined above can be shifted k times to the left, as a result of
a series of pull moves. We denote such a displacement as the new boundary
L(k) = {(r− 1

2k)×(
√

3 ·Z−
√

3
2 (−1)k)}∪{(r+ 1

2 −
1
2k)×(

√
3Z+

√
3

2 +
√

3
2 (−1)k)},

where k = 1, 2, . . . (see Figure 4). The right boundary R and its shift R(k) to
the right can be defined symmetrically. Also we make use of the subscript t to
denote a boundary at time step t, e.g., Lt(k).

Theorem 1. The pull move set as described in Definition 4 is complete.

Proof. In order to show completeness, it is sufficient to show that there is a
sequence of moves μ1 = (φ1, ψ1), . . . , μk = (φk, ψk) from Mpull(C(p)), such
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that φ = φ1, λ = ψk and ψj = φj+1 for all 1 ≤ j ≤ k − 1, with φ being
an arbitrary conformation and λ being a horizontal line conformation. Since
the pull move set is reversible according to Theorem 1, the sequence of moves
transforming φ to a horizontal line conformation can be reversed and another
arbitrary conformation ψ �= φ can be reached. In other words, there is a sequence
of moves μ1 = (φ1, ψ1), . . . , μr = (φr , ψr) from Mpull(C(p)), such that φ = φ1,
ψ = ψr and ψj = φj+1 for all 1 ≤ j ≤ r − 1. According to Definition 5 this
implies that Mpull(C(p)) is complete. Let us now show that λ can be reached
from any conformation φ.

If the conformation φ is already horizontal, i.e., if none of its binding edges lies
on a non-horizontal line of the lattice, then φ = λ and we are done. Otherwise,
at least one of the binding edges in φ lies on the boundary. Let us consider the
region between L and R, including the boundaries themselves, we call this region
the core of the conformation. We will now distinguish between Case a, when
either of the ends, namely vertices φ(1) or φ(n), lie outside the core and Case
b1 and b2, when both of the ends are located inside the core.

Case a: Any part of φ lying outside of the core must be connected via a horizon-
tal chain with some vertex lying on the boundaries. Assume that there is a part
of φ lying on the left of L, containing vertices {φ(1), . . . , φ(j)}, with φ(j) ∈ L
and j ∈ {2, . . . , n − 1}. Since φ(1) lies outside the left boundary, there exists a
vertex v ∈ V (L′

2D), which is empty according to φ and adjacent to φ(1), but not
to φ(2). Thus, a front-end pull move can be performed during time step t. In
case edge (φ(j), φ(j + 1)) happens to form a loop with edge (φ(j − 1), φ(j)), the
pull move erases this loop and shifts the boundary to the left. We get Lt(1), but
vertex φ(j) still lies on the boundary. Now an additional front-end pull move,
can only bring vertex φ(j) outside the boundary, such that the horizontal part
of the chain contains vertices {φ(1), . . . , φ(j + 1)}, with φ(j + 1) ∈ Lt+1(2). In
general, a sequence of either single front-end pull moves or pairs of front-end
pull moves is needed to reach the horizontal line conformation.

Case b1: Let us consider the subcase when one of the end vertices lies exactly
on one of the boundaries. Without loss of generality, we choose vertex φ(1) to
lie on L, since the cases of the other boundary R or the other end φ(n) are
symmetric. Then, there exists a vertex v ∈ V (L′

2D), which is empty according
to φ and adjacent to φ(1), but not to φ(2). This allows a front-end pull move
to be executed during time step t. The result of this move is either to bring
φ(1) outside boundary L, or to shift the boundary to the left. In the latter case,
L becomes Lt(1) and an additional front-end pull move can bring φ(1) outside
Lt+1(1). As already shown in Case a there is a sequence of moves to reach a
horizontal line conformation, if either of the ends lies outside the core.

Case b2: Now we will consider the case of vertex φ(1) not lying on any of
the boundaries, but rather being strictly inside the core. Initially, L contains the
leftmost edge of φ. If more than one edges lie on L, let us pick edge (φ(i), φ(i+1)),
where i is the minimum index from {2, . . . , n − 1}. Then, there exists a vertex
v ∈ V (L′

2D), which is empty according to φ and adjacent to both φ(i) and φ(i+1).
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This allows a forward pull move to be executed during time step t. Such a move
always results in shifting the left boundary, i.e. L becomes Lt(1). Depending on
the initial orientation of edge (φ(i), φ(i + 1)) on L, this edge might still lie on
the new boundary Lt(1). In that case, an additional forward pull move at time
step t+1, is required to bring edge (φ(i− 1), φ(i)) on Lt+1(2), i.e. the boundary
is shifted as well. Otherwise, one forward pull move at time step t is enough to
bring edge (φ(i−1), φ(i)) directly on Lt(1). In general, one forward pull move or
a pair of forward pull moves always decreases by one the index of the leftmost
vertex with minimum index. On the same time the leftmost boundary is shifted
to the left, which ensures free space for future moves. Eventually, a sequence of
such moves will bring φ(1) on the left boundary. For this case we have already
described a sequence of moves to reach a horizontal line conformation. ��

3 The 3D Triangular Lattice Model

One of our aims is the extention of pull moves to the FCC lattice, using the
isomorphism property between the 3D triangular grid and the FCC lattice. The
3D triangular grid can be described as a stack of 2D triangular grids, where
every individual 2D grid is slightly offset with respect to the grids above and
below it. The set N3D of minimal vectors connecting its neighbors is given by

N3D = {(0,±1, 0), (±
√

3
2 ,±

1
2 , 0), ( 1√

3
, 0,

√
2
3 ), (− 1√

3
, 0,−

√
2
3 ), (− 1

2
√

3
,± 1

2 ,
√

2
3 ),

( 1
2
√

3
,± 1

2 ,−
√

2
3 )}. A simple rotation of the N3D along the y-axis by cos−1( 1√

3
)

will give us precisely traditional neighborhood vectors in FCC lattice, namely
N3D = {(0,±1, 0), (±1, 0, 0), (± 1

2 ,±
1
2 ,±

1√
2
)}, thus establishing the isomorphism

between the two models. The notion of a loop remains the same, since any
two consecutive binding edges having end points as neighbours create a 60◦

angle. Hence the pull moves can be extended to the FCC without changing the
definition, so as the reversibility and completeness proofs.

4 Experiments with Tabu Search

We implemented the Tabu Search (TS) strategy for evaluating pull moves in
triangular lattice HP models. For this purpose, we used the Bioinformatics Util-
ities (BIU) (http://www.bioinf.uni-freiburg.de/Software/) library developed by
the bioinformatics group of Albert-Ludwigs-University Freiburg, Germany. We
extended the library by implementing the 2D triangular lattice and the pull
move set for triangular lattice models.

Tabu search, originally proposed by Glover [7], is a form of greedy local search
that begins by marching to a local minimum from an arbitrary solution state. To
avoid retracing the steps used, the method records recent moves in the form of
a tabu list. Normally, the TS strategy chooses a new better solution if one exists
and is not tabu, but if such a choice is impossible, then a worse solution can be
chosen. If a move is on the tabu list, but leads to a new optimal solution, then
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such a move can be done assuming that an additional condition, the so-called
aspiration level, is met. The calculations start with the generation of a starting
solution, using some problem-specific knowledge. In the following section, the
key elements of tabu search are defined with respect to pull moves in triangular
lattice models.

4.1 Tabu Search for Triangular Lattice HP-Models

For a given amino-acid sequence of arbitrary length n, a conformation is rep-
resented as a sequence of directions of length n − 1 in the triangular lattices.
Therefore in our implementation, a conformation is also a string consisting of
elements from the alphabet of 6 directions in the 2D case or of 12 directions in
the FCC case. Note that, due to the self-avoidingness property of the embedding,
not every sequence of directions describes a proper conformation.

The neighbourhood N (φ) of an arbitrary conformation φ is the set of confor-
mations obtained by applying all the valid pull moves to φ. Given the length n
of the sequence, there will be at most 4(n − 1) + 6 and 8(n − 1) + 14 possible
pull moves for the 2D triangular and the FCC lattice, respectively, but not all
of them can be applied. Normally, the more compact the conformation is, the
less is the number of applicable pull moves, and thus the smaller is the size of
the neighbourhood.

The starting state is generated from a state with straight line conformation
in the lattice, by applying a given number of moves consecutively, selected from
the set of pull moves uniformly randomly, irrespective of the quality of the
move. The neighbourhood N (φ) of a given conformation φ can consist of many
solutions with equally good energies. In such a case, we choose one of them
uniformly randomly. The tabu list is a short time memory, implemented as a
circular queue containing a limited number of forbidden moves. If the list is full,
then adding a new move removes the oldest one. The searching procedure can
make a transition from conformation φ to ψ by applying a forbidden move, if
the energy value Eψ is lower than Emin of the current best conformation, or Eψ

is lower than Eφ and all other conformations in the neighbourhood N (φ) have
equal or higher energy value than φ, given that ψ lies in the first half of the
tabu list (aspiration level). Each execution of the search procedure is called an
iteration. The algorithm terminates if an expected optimum value of the energy
Eopt has been achieved, or a given number lit of iterations, has been reached.

4.2 Experimental Results

The goal of our experiments was to establish the effectiveness of pull move set
in finding optimal solutions in the 2D triangular lattice HP model, irrespective
of the time, embedded in Tabu search algorithm. The preliminary results of
these experiments look very promising. Our first set of experiments deals with
2D triangular benchmark sequences with known optimal energy [11]. The num-
ber of iterations was fixed to 100 000. The size of the tabu list was fixed to half of
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Table 1. Test sequence-1 for 2D triangular lattice HP model

Sequence Length Eopt ETS

11001001010100101011 20 -17 -17
11010101010010010011 20 -17 -17
110010010100101001011 21 -17 -17
110100100101010010011 21 -17 -17
1100100101010010010011 22 -17 -17
11101010101010101010111 23 -25 -25
110010010010010010010011 24 -17 -17
111010100101010101010111 24 -25 -25
111001001001001010010100100111 30 -25 -25
111001001001010010100100100111 30 -25 -25
1110010010010101001001001000001010111 37 -29 -29
111100010100101010101010101001111111111111111000101

102 -122 -116
010100101111111111001010101000101111111111000111111
Eopt: Optimum energy in the literature.
ET S : Minimum energy found by Tabu Search.

Table 2. Test sequence-2 for triangular lattice HP models

Sequence Length
2D FCC 3D FCC

EHGA+T R ET S EHGA+TR ET S

10100110100101100101 20 -15 -15 -29 -23
110010010010010010010011 24 -13 -17 -28 -23
0010011000011000011000011 25 -10 -12 -25 -17
000110011000001111

36 -19 -24 -51 -38
111001100001100100
001011101110000011111111

48 -32 -40 -69 -74
110000001100110010011111
110101010111101000100010001

54 -23 -31 -59 -77
000010001000101111010101011
001110111111110001111111111010

60 -46 -70 -117 -130
001111111111110000111111011010
11111111111101010011001100100110

64 -46 -50 -103 -132
01100100110011001010111111111111
EHGA+TR: Minimum energy found by Hybrid Genetic Algorithm with Twin Removal.
ETS : Minimum energy found by Tabu Search.

the maximum number of pull moves for a given sequence. As the parameters
of the Tabu Search were not fine tuned, we avoid mentioning the number of
iterations required. The summary is presented in Table 1. As shown there, we
got the optimum result for most of the sequences while only managed to find a
local minimum for the longest sequence before the program terminates.

The reason for this is simple: As the number of conformations grows expo-
nentially with the length of the sequence, it becomes harder for TS to escape
the conformational space around local minima. Therefore we need to fine tune
few parameters as well as allowing more time to converge to optimum value for
all sequences. Incorporation of an effective diversification procedure can allevi-
ate the problem by exploring new region earlier. Performance can be further
improved by dynamically changing the tabu list size and aspiration level.

Our second set of experiments deals with benchmark sequences, for which op-
timal energy is not yet known. Previous work has been done [14,15] in 2D and 3D
FCC lattice. We compared our results with this prior work and present a sum-
mary in Table 2. We had exceptionally good results for all 2D cases and longer
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sequences in 3D cases. Again, it is expected that fine tuning the parameters will
help us to escape local minima and improve the results.

5 Conclusions

The main contribution of our paper can be summarized as the formal introduc-
tion of pull moves for local search in triangular grid lattices. We should also
stress the importance of finding new ground states for several benchmarks in
the 2D and 3D case. This clearly demonstrates the efficiency of pull moves as a
neighborhood function for local search algorithms and sets the ground for further
study of heuristic algorithms for protein structure prediction. We strongly be-
lieve that fine tuning the parameters of the tabu search can yield faster and more
accurate results. We leave this as a subject of future research along with test-
ing more sophisticated heuristics. Future research will also focus on landscape
analysis of protein folding in triangular lattices.
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Abstract. We propose a new discrete protein structure model (using
a modified face-centered cubic lattice). A novel branch and bound algo-
rithm for finding global minimum structures in this model is suggested.
The objective energy function is very simple as it depends on the pre-
dicted half-sphere exposure numbers of Cα-atoms. Bounding and branch-
ing also exploit predicted secondary structures and expected radius of
gyration. The algorithm is fast and is able to generate the decoy set in
less than 48 hours on all proteins tested.

Despite the simplicity of the model and the energy function, many of
the lowest energy structures, using exact measures, are near the native
structures (in terms of RMSD). As expected, when using predicted mea-
sures, the fraction of good decoys decreases, but in all cases tested, we
obtained structures within 6 Å RMSD in a set of low-energy decoys. To
the best of our knowledge, this is the first de novo branch and bound
algorithm for protein decoy generation that only depends on such one-
dimensional predictable measures. Another important advantage of the
branch and bound approach is that the algorithm searches through the
entire conformational space. Contrary to search heuristics, like Monte
Carlo simulation or tabu search, the problem of escaping local minima
is indirectly solved by the branch and bound algorithm when good lower
bounds can be obtained.

1 Background

The contact number (CN) is a very simple solvent exposure measure that only
depends on the positions of Cα-atoms. Given a fixed backbone structure, the
CN of a residue Ai is the number of other Cα-atoms in a sphere of radius r
centered at the Cα-atom of Ai. The CN of all residues of a given structure is
called the CN-vector. A more information rich measure is called the half-sphere-
exposure (HSE) measure [5]. Here, the sphere is divided into an upper and a
lower hemisphere as illustrated in Figure 1. The up and down numbers of a
residue therefore refer to the number of other Cα-atoms in the upper and lower
hemispheres respectively. For a given fixed structure, the up and down numbers
for all residues is called the HSE-vector. CN- and HSE-vectors therefore only
depend on the radius of the spheres and the coordinates of Cα-atoms, which is
very convenient when working with simplified models.
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HSE vector up

5 5

HSE vector down

b

down

up
CB

B

C

A

AB

V

Fig. 1. Given the positions of 3 consecutive Cα-atoms (A, B, C), the approximate side-
chain direction V̄b can be computed as the sum of ĀB and C̄B. The plane perpendicular
to V̄b cuts the sphere centered at B in an upper and a lower hemisphere.

Recently it was shown that it is possible to approximately reconstruct small
protein structures from CN-vectors or HSE-vectors only [12]. These results
showed that HSE-optimized structures tend to have better coordinate RMSD with
the native structure and more accurate orientations of the side-chains compared
to CN-optimized structures. This is very interesting in regards to de novo protein
decoy generation, because CN- and HSE-vectors can be predicted with reason-
able accuracy [19,14]. To use these results for de novo decoy generation, one could
therefore first predict the HSE-vector from the amino acid sequence and then re-
construct the protein backbone from this vector. However, the results in [12] were
only based on small proteins with up to 35 amino acids and it was conjectured that
the reconstruction of larger proteins would require more information than what
is contained in an HSE-vector [12]. Another difficulty is that HSE-based energy
functions appear to have many local minima in the conformational space. This is
often a problem for search heuristics like Monte Carlo simulation or tabu search,
since they get trapped in these minima and must spend much time escaping them.

The problem of reconstructing protein structure from vectors of one-dimension-
al structural information has also been studied by Kinjo et al. [7]. They used ex-
act vectors of secondary structure, CN and residuewise contact order (RWCO)
together with refinement using the AMBER force field to reconstruct native-like
structures. Their results indicated that secondary structure information and CN
without the use of RWCO is not enough to reconstruct native-like structures. Un-
fortunately, RWCO is difficult to predict compared to CN, HSE and secondary
structure [7] and it would therefore be difficult to use their method directly for de
novo decoy generation.

Here we attack these problems by adding more predicted information to our
model and use a thorough branch and bound algorithm for finding minimum en-
ergy structures. By adding more predicted information we expect to increase the
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probability of the energy function to have global minimum near the native struc-
ture. Furthermore, using a branch and bound approach we are able to implicitly
search the whole conformational space and therefore avoid getting trapped in lo-
cal minima. Besides using HSE-vectors, we also use secondary structure (SS) and
radius of gyration (Rg). These three measures, (HSE, SS and Rg), can all be pre-
dicted from the amino acid sequence only [19,10,16], and can therefore be used
for de novo protein decoy generation. The energy function is simple, and we show
how a good lower bound of the energy for a subset of the conformational space
can be computed in polynomial time. This lower bound enables the branch and
bound algorithm to efficiently bound large conformational subspaces and to find
global minimum energy structures in a reasonable amount of time. Throughout
the text our branch and bound algorithm is referred to as EBBA (Efficient Branch
and Bound Algorithm).

The idea of using secondary structure elements in a discrete model has been
suggested by others, i.e., Fain et al. [4] and Levitt et al. [8]. However, their mod-
els have a relatively small conformational space and it is therefore possible to
completely enumerate all structures allowed by the model. Branch and bound al-
gorithms and other algorithms for determining global minimum structures have
been used for protein structure prediction earlier. Some of these algorithms work
on very simplified models like the HP-lattice model [1]. Even though these algo-
rithms can solve most problems to optimality, the global minimum structures are
often very far from the native structure. Another branch and bound algorithms,
called αBB[9] uses more detailed potential energy functions which depend on sev-
eral physical terms. In [9], the αBB is shown to be successful on small molecules. In
[17], the αBB was improved and was used for prediction of real protein structures.
Dal Palu et al.[11] use a constraint logic programming approach for protein struc-
ture prediction. They also use secondary structure segments in a simplified model.
However, in their model, all Cα-atoms must be placed in a lattice (FCC). This dif-
fers from our approach, where we only demand lattice directions of the secondary
structure segments. Dal Palu et al. use a standard solver (SICStus Prolog) which
makes use of standard bounding techniques, while we have developed a much more
efficient bounding algorithm specialized for this particular problem. Furthermore,
the results published in [11,17] are not true de novo - the secondary structures are
all derived from the native structure of the proteins. On the contrary, the results
presented here are true de novo. All parts of the energy function are predicted from
amino acid sequences only. EBBA is, to our knowledge, the first de novo branch
and bound algorithm that only use one-dimensional predictable measures.

We use 6 benchmark proteins for evaluating EBBA. These benchmark proteins
are chosen because they are used in similar studies before [15,6] and we are there-
fore able to compare our method with the state-of-the-art protein conformational
sampler FB5-HMM [6]. Our results show that EBBA is able to find global mini-
mum energy structures for most of these proteins in less than 48 hours. We have
evaluated EBBA using both exact values and predicted values to estimate the im-
portance of prediction quality. The results show that predicted structures having
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global minimum energy are not always native-like, however among the 10.000 low-
est energy structures we typically find many good decoys (less than 6 Å RMSD).

2 Methods

A sequence of residues of the same secondary structure class is called a segment.
Segments can be considered as rigid rods that describe the overall path of Cα-
atoms belonging to the segment. Segments have a start coordinate and a direction,
and for helices and sheets their end coordinate can also be determined because of
their constrained geometry. A segment is therefore an abstract representation of a
sequence of residues and it does not explicitly contain the coordinates of internal
Cα-atoms. We define a segment structure to be the coordinates of all Cα-atoms
of a segment. Note that a segment in principle allows for infinitely many different
segment structures even though they are restricted to be of a specific secondary
structure class. However, this model is discrete and therefore only a finite repre-
sentative set of segment structures are generated. This is described in more detail
in Section 2.1.

Any tertiary structure of a protein can be described in these terms; a list of
segments and a segment structure for each segment. We call such a list of segments
a super structure and a super structure with a fixed segment structure for each
segment is called a complete structure.

To discretize and reduce the conformational space of this model, we reduce the
degree of freedom for segments. Segments are therefore only allowed to have a
discrete set of predefined directions between the first and last Cα-atoms. Ad-hoc
experiments show that the 12 uniformly distributed directions acquired from the
face-centered cubic (FCC) lattice is a good tradeoff between discretization and
flexibility. The direction of a segment therefore has one of the following 12 direc-
tion vectors

[1,1,0], [1,0,1], [1,-1,0], [1,0,-1], [-1,1,0], [-1,0,1],
[-1,-1,0], [-1,0,-1], [0,1,1], [0,1,-1], [0,-1,1], [0,-1,-1]

To further discretize the model, we set an upper limit (u) on the number of
possible segment structures allowed by a segment. Given an amino acid sequence
with m segments and u possible segment structures for each segment, the total
number of complete structures, N (disregarding symmetric structures), allowed
by this model is

N = 4 × 11m−2 × um (1)

2.1 Segment Structures

Here we briefly describe how the allowed segment structures of a given segment
are computed. This computation depends on the secondary structure class of the
segment.
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Given a helix or sheet segment, we generate one segment structure having the
angle properties of a right-handed helix or a beta strand. Then the other u − 1
segment structures are generated by rotating the first structure uniformly around
the axis going through the first Cα-atom and ending at the beginning of the next
segment.

There are no simple geometric constraints that describe coil structures. Ex-
periments show that short sequences with similar amino acid sequences, so-called
homologous sequences, often have similar tertiary structures [3]. Given a coil seg-
ment, we therefore query PDB Select (25) with protein sequences and their known
structures and find the

√
u best fragment matches in terms of amino acid similar-

ity. Each of these structures is also rotated uniformly
√

u times as for helices and
sheets such that a total of u structures are obtained. The fragment database does
of course not contain the proteins used in the experiments. Even though we are
querying PDB Select (25) for coil fragments, we still consider our algorithm to be
de novo, because we do not explicitly make use of templates. One of the most suc-
cessful structure prediction algorithms (Rosetta[15]) also makes use of fragments
from proteins in PDB and is also considered to be de novo.

2.2 Energy

The structures allowed by the model always have the desired secondary structure
(from a prediction), however the HSE-vector and radius of gyration of the struc-
tures varies. Therefore, we want to identify those structures having correct radius
of gyration and HSE-vectors similar to the predicted HSE-vectors. The radius of
gyration can be predicted from the number of residues n of the protein [16]:

Rg = 2.2n0.38 (2)

This prediction is often accurate for globular proteins. We therefore assign infinite
energy to structures having radius of gyration more than 5% away from the pre-
dicted Rg. We assign infinite energy to structures if their subchain of amino acids
from the first amino acid to the l’th (l < n) amino acid is more than 5% away from
the predicted Rg. A structure is said to be clashing if the distance between two
Cα-atoms is less than 3.5 Å. We also assign infinite energy to clashing structures
and conformations where two succeeding segment structures have unlikely angle
properties.

Let P denote the conformational space of a protein with n residues A1, A2, ...,
An. Let P ∈ P . The total energy Q(P ) of P is defined as the sum of the residue
energy contributions QP (Ai), i.e.,

Q(P ) =
n∑

i=1

QP (Ai) (3)

with
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QP (Ai) =
{

ΔCN(Ai)2 if Ai is the first residue of a segment
ΔHD(Ai)2 + ΔHU(Ai)2 otherwise

(4)
where

– ΔCN(Ai) is the difference between the contact number of the i-th residue Ai

in P and the desired (i.e., predicted) contact number of Ai.
– ΔHD(Ai) is the difference between the down half sphere exposure number of

Ai in P and the desired down half sphere exposure number of Ai.
– ΔHU(Ai) is the similar difference for the up half sphere exposure.

The reason why CN instead of HSE is used for the first residue of a segment is that
the HSE value depends on the position of the two neighbour residues as illustrated
in Figure 1. On the other hand, HSE can be used for the last residue of a segment,
because one of the neighbours are an interior residue and the other neighbour is
the end position of the segment whose coordinates are always known. The radius
of the contact sphere is set to 15 Å.

2.3 Branch and Bound

An explicit evaluation of all allowed structures is only feasible for proteins with
very few segments and segment structures. A standard approach for overcoming
such combinatorial explosion is to use the branch and bound technique [20].

Branching. The root of the branch and bound tree represents all complete struc-
tures allowed by the model. This is done by only fixing the direction of the first
segment. Every other node s represents a smaller subset of complete structures
Ps than its parent. This is done by either fixing a segment direction or by fixing a
segment structure. Therefore, when branching on a node, either 11 children with
fixed segment directions are created or u children with fixed segment structures
are created. A node at level 2 × m has all segment directions and segment struc-
tures fixed and therefore represents a complete structure. Nodes at level 2 × m
cannot be branched on further and are called leaves.

Bounding. A lower bound is a value that is less than, or equal to the lowest
energy of any leaf in the subtree of the node. Such a value can be used to disregard,
or bound, the subtree of a node if the lower bound is larger than some observed
energy (an upper bound). An upper bound of the energy can be found using some
advanced heuristic or a simple depth first search as described in section 2.4. Here
we present a reasonable tight lower bound that can be computed fast. The use of
this lower bound makes it possible to solve large problems to optimality as shown
in the results section.

Let PS denote the subset of the conformational space P at any node of the
branch and bound tree where some segments might have fixed directions while
others might have fixed segment structures (i.e., fixed coordinates of all Cα-atoms)
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as explained in the description of the branching strategy above. We are looking for
a lower bound for minP∈PS{Q(P )}.

Consider the j-th segment Sj , 1 ≤ j ≤ m, where m is the number of segments.
Let

QP (Sj) =
∑

Ai∈Sj

QP (Ai)

where QP (Ai) is defined in Equation 4. Then the energy of a structure can be
written as the sum of segment energies

Q(P ) =
∑

1≤j≤m

QP (Sj)

Suppose that a lower bound for minP∈PS{QP (Sj)} can be determined. Summing
up these lower bounds for all m segments will therefore yield a lower bound for the
energy of all conformations in PS. To compute such a lower bound for a segment
Sj , the following problem is solved for all segment structures of Sj . For simplicity
we only describe how a lower bound using CN-vectors can be computed, however
it is straightforward to use a similar approach for HSE-vectors.

Given a segment structure for Sj , we determine for each of its Cα-atoms all pos-
sible values of CN when the super structure is fixed. This problem can clearly be
solved in exponential time by complete enumeration of all possible segment struc-
tures. However, using the following dynamic programming approach, the problem
can be solved much faster in polynomial time.

Let ca,b(i, r) where (1 ≤ i ≤ m) and (1 ≤ r ≤ u) be the number of con-
tacts of residue a in segment b contributed by residues in segment i having seg-
ment structure r. Let (i, j) be an entry in the dynamic programming table and let
qa,b(i, j) ∈ {0, 1} represent whether or not residue a in segment b can have a total
of j, (0 ≤ j < n), contacts contributed by residues in segments Sl, (l < i). Then
the recursive equation of the dynamic programming algorithm is:

qa,b(i, j) =

⎧
⎨

⎩

1 if i = 1 and ca,b(1, r) = j for some r
1 if i > 1 and q(i − 1, k) = 1 and ca,b(i, r) = j − k for some r
0 otherwise

(5)

Each row can be computed in O(n × u) time using the values from the previous
row, so the total running time of the algorithm is O(m × n × u). The last row
in the table represents all possible contact numbers for residue a in segment b.
The last row can therefore easily be used to find the minimum difference between
the desired CN and one of the possible CNs. The dynamic programming problem
is solved for all residues of the segment and the sum of the minimum differences
for each residue is the lower bound of the segment energy. For more details and
examples of computing lower bounds, refer to [13].

In the above discussion, it was assumed that all Cα-atoms in Sj have their co-
ordinates fixed in PS . Lower bounds can also be computed if the segment struc-
ture has not been fixed yet. The above lower bound computation is then merely
repeated for each of the u possible segment structures, and the smallest one is
selected as the overall lower bound of the segment.
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Lower bounds can also be computed for nodes where a number of the last seg-
ment directions have not yet been fixed. Here, the input to the dynamic program-
ming algorithm is only the first fixed segments. Then, the CN row for the last fixed
segment is augmented by checking whether each Cα-atom on the free segments can
possibly be in contact with the Cα-atom in question.

2.4 Searching

We search the branch and bound tree by keeping a set of nodes for which the lower
bound has been computed but not bounded. Initially, the set contains only the
root of the branch and bound tree. Iteratively the algorithm chooses the lowest
cost node and replaces it with the children obtained by branching. When using
this strategy, an optimal solution is found when the lowest cost node in the set
is a leaf node. In practice the set of unbranched nodes might become very large
and difficult to store in memory. We therefore combine it with a depth first search,
such that when the node set contains more than 50.000 nodes we shift to depth
first search until the set is less than 50.000 again.

3 Experiments

Here we predict the tertiary structures of 6 proteins. The tertiary structures of
these proteins are known and we can therefore evaluate the quality of our results.
These proteins have previously been used for benchmarks in the literature [15,6]
and our results can therefore be directly compared with the state-of-the-art con-
formational sampler FB5-HMM[6].

The input to EBBA is a secondary structure assignment, HSE-vector and the
radius of gyration. For each protein we obtain these values using prediction tools.
Based on the amino acid sequence, we predict the secondary structure using
PSIPRED [10] and we predict HSE-vectors using LAKI [19]. Note that PSIPRED
and LAKI are neural networks trained on a selection of proteins from PDB. The
6 benchmark proteins used here also exist in PDB, so there is a slight chance that
the training sets for PSIPRED and LAKI contain some of these proteins. How-
ever, the prediction quality of the 6 benchmark proteins is close to what should
be expected from PSIPRED and LAKI. Here, the average Q3 score of secondary
structure prediction is 80.7% (compared to an average score of 80.6% on CASP
targets). The average correlation of the HSE up and down values are respectively
0.74 and 0.66 (compared to the reported up and down correlations of 0.713 and
0.696 respectively). We do therefore not consider it to be a problem that the bench-
mark proteins exist in PDB. We predict the radius of gyration using Equation 2.

Branch and bound algorithms are typically used to find the global minimum
solutions. However, we use EBBA for protein decoy generation and we therefore
want to obtain a large number of structures. The 10.000 global best structures in
terms of energy are therefore found and not just the global minimum. This can be
done by maintaining a queue of 10.000 structures during the search. This number
is still very small compared to the exponential size of the conformational space. For
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Table 1. Column 2 shows the number of segments m and column 3 shows the number
of segment structures u. Column 4 shows the order of helix, sheet and coil segments.
Column 5 shows the size of the conformational space given by Equation 1 and column 6
shows the number of hours spent by the algorithm. Column 7 and 8 show the percentage
of the 10.000 structures that fall below the given threshold. Column 9 shows the lowest
RMSD of the 10.000 structures. Column 10 shows the energy of P ∗ which is the lowest
energy structure. For each protein, there is an exact and a predicted row. Exact refers to
HSE-vectors, radius of gyration and secondary structure obtained from the native struc-
ture. In the predicted rows, all input values are predicted from the amino acid sequence
and the results can therefore be considered as de novo.

Type m u SS N T < 6 Å < 5 Å lowest Q(P ∗)

Protein A (1FC2), 43 residues
Exact 5 8 CHCHC 1.7 × 108 0.1 18.1 7.0 2.8 4.34
Predicted 7 8 CHCHCHC 1.4 × 1012 6.9 33.0 13.8 4.5 5.26

Homeodomain (1ENH), 54 residues
Exact 6 8 CHCHCH 1.5 × 1010 0.6 21.6 13.2 3.1 4.36
Predicted 7 8 CHCHCHC 1.4 × 1012 6.1 4.1 0.8 4.1 5.70

Protein G (2GB1), 56 residues
Exact 9 8 SCSCHCSCS 1.0 × 1016 18.2 60.8 36.6 3.4 4.22
Predicted 10 8 SCSCHCSCSC 9.2 × 1017 4.7 73.1 0.0 5.3 6.22

Cro repressor (2CRO), 65 residues
Exact 11 4 CHCHCHCHCHC 4.0 × 1016 24.1 5.7 1.4 4.3 6.49
Predicted 10 3 HCHCHCHCHC 5.1 × 1013 7.4 1.5 0.0 5.3 5.89

Protein L7/L12 (1CTF), 68 residues
Exact 8 8 SCHCHCHC 1.2 × 1014 5.6 5.1 1.9 4.6 7.19
Predicted 11 3 SCHSHCHCHCS 1.7 × 1015 19.2 0.1 0.0 5.4 5.84

Calbindin (4ICB), 76 residues
Exact 11 2 CHCSHCHCHCH 1.9 × 1013 3.56 4.5 0.7 4.4 6.18
Predicted 8 7 CHCHCHCH 4.1 × 1013 31.4 0.5 0.0 5.1 6.79

comparison and evaluation of the model and prediction quality, all experiments
are also done using the exact secondary structure and exact HSE-vectors obtained
from the native structure of the proteins. All experiments were initially run with
u = 8 (the number of segment structures). Some did not finish in 48 hours, and
they were run with the highest value of u that could be solved in less than 48 hours.
All computations were performed on a 2.4 GHz P4 with 512 RAM.

4 Results and Discussion

Table 1 shows the complexity of the models for different proteins and the run-
ning time of EBBA. The table also shows the results of running EBBA on the 6
benchmark proteins.

The maximum number of segment structures (u) that could be solved in less
than 48 hours depends much on the number of segments of the protein. For the
smallest proteins (1FC2 and 1ENH) the algorithm terminated in less than 48 hours
using u = 8. Even though 2GB1 has relatively many segments the algorithm also
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Table 2. Comparison between FB5-HMM and EBBA. Column 2 and column 4 show the
percentage of good decoys for FB5-HMM and EBBA respectively. Column 3 and column
5 show the lowest RMSD of a structure found by FB5-HMM and EBBA respectively.
Both algorithms uses predicted secondary structure information and predicted radius
of gyration.

Protein FB5-HMM EBBA
< 6 Å Min. RMSD < 6 Å Min. RMSD

Protein A (1FC2) 17.1 2.6 33.0 4.5
Homeodomain (1ENH) 12.2 3.8 4.1 4.1
Protein G (2GB1) 0.001 5.9 73.1 5.3
Cro repressor (2CRO) 1.0 4.1 1.5 5.3
Protein L7/L12 (1CTF) 0.3 4.1 0.1 5.4
Calbindin (4ICB) 0.4 4.5 0.5 5.1

terminated in less than 48 hours using u = 8. This is mainly because bounding
occured early in the branch and bound tree.

The most difficult protein in terms of bounding efficiency is 4ICB (using pre-
dicted measures), where it turns out that significant bounding first occurs in level
5 of the branch and bound tree. In all instances, the conformational space is huge,
and it is clear that finding global minimum structures could not have been done
in reasonable time without efficient bounding.

Table 1 shows that the set of 10.000 low energy structures for all 6 proteins con-
tains good decoys (RMSD less than 6 Å). Also, for all proteins the lowest RMSD
is smallest when using exact values compared to the predicted values. This is ex-
pected since the energy landscape should have a global minimum closer to the
native structure when using exact values. However, it is surprising that for two
of the proteins (1FC2 and 2GB1) the fraction of good decoys (< 6 Å RMSD) is
better when using predicted values compared to exact values.

The results have been compared directly with FB5-HMM [6] in Table 2. FB5-
HMM is the state-of-the-art method for conformational sampling. The method
is based on a Hidden Markov Model and generates a large set of structures which
usually contains many good decoys when enforcing compactness. The major
difference between FB5-HMM and EBBA is that FB5-HMM does not use an en-
ergy function. FB5-HMM can also benefit from the secondary structure prediction
and radius of gyration prediction. The results we have shown for FB5-HMM are
therefore obtained using predicted secondary structure and using a greedy col-
lapse scheme. The results for FB5-HMM are from [6] where 100.000 structures
are generated. The results show that EBBA finds a better percentage of good de-
coys for most of the proteins (1FC2, 2GB1, 2CRO and 4ICB). The high amount
of good decoys for protein G is very interesting since protein G is known to be one
of the more difficult structures in this benchmark set [15,6]. For all proteins, ex-
cept 2GB1, FB5-HMM finds at least one structure with lower RMSD than EBBA.
This is not surprising since FB5-HMM here generates 10 times as many decoys
than EBBA and therefore has a much higher probability of hitting a low RMSD
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structure. Another advantage of structures generatedby EBBA, is that the geome-
try of the secondary structure segments is perfect because they are constructed us-
ing the correct secondary structure geometry. The running time of FB5-HMM for
producing the set of 100.000 decoys is comparable to the running time of EBBA.

5 Conclusions

We have presented a branch and bound algorithm for finding the lowest energy
structures in a large conformational search space. The results show that the set
of low-energy structures is a very good decoy set. The energy function is based
on HSE which is a simple predictable measure. This algorithm is the first de novo
branch and bound algorithm for protein decoy generation using only one-
dimensional predictable information. We have shown experimentally that good
decoys always exist among the 10.000 lowest energy structures for the proteins
used here. We have also shown that the algorithm is comparable in performance
with the state-of-the-art conformational sampler FB5-HMM. The energy function
is not accurate enough to pinpoint the lowest RMSD structure in this set. An im-
portant future research direction is therefore to examine this set of low energy
structures with a more detailed energy function and to identify the native-like
structures. The largest protein considered have 76 residues. There is a problem
using the branch and bound algorithm on larger proteins since then only a small
fraction of the conformational space can be searched in reasonable time. However,
we believe that exploiting how super secondary structures [18,2] arrange in nature,
might be a way to solve this problem. Better search heuristics for finding upper
bounds on the energy can also be relevant since a good upper bound on the energy
also improves the performance of the branch and bound algorithm. Using a more
probabilistic approach might also improve the quality of the results. It might also
be possible to train a Bayesian network to predict the probability of a given HSE-
vector given the amino acid sequence. This would be a more detailed usage of the
HSE-vector compared to the simple energy function used here.
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Ebenhöh, Oliver 99
Eskin, Eleazar 135

Forslund, Kristoffer 284

Gat-Viks, Irit 174
Grimbs, Sergio 99
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